Journal of Materials Science

, Volume 45, Issue 3, pp 850–858 | Cite as

Characterization and wear behavior of plasma-sprayed Al2O3 and ZrO25CaO coatings on cast iron substrate

  • N. KrishnamurthyEmail author
  • M. S. Murali
  • P. G. Mukunda
  • M. R. Ramesh


Plasma spraying is one of the methods used for combating wear. Despite of its wide spread industrial use, little is known about the basic friction behavior and mechanism by which such coatings wear. In this work, the abrasive wear resistance of plasma-sprayed ceramic coatings on cast iron substrate has been investigated through pin-on-disc test. It was found that the coefficient of friction and wear affected mainly by splats and porosity, surface roughness, and coating thickness. The coefficient of friction is found to be more significantly affected by load than by other test parameters. This work also includes the characterization of coatings.


Wear Resistance Wear Rate Bond Coat Thermal Barrier Coating Wear Track 


  1. 1.
    Bhushan B, Gupta BK (1991) Handbook of tribology—materials, coatings and surface treatments. McGraw-Hill, New York, p 1168Google Scholar
  2. 2.
    Yonushonic TM (1989) Thermal spray technology, new ideas and processes. ASM International, Metals Park, OH, pp 239–243Google Scholar
  3. 3.
    Novak RC, Matarese AP, Huston RP (1989) Thermal spray technology, new ideas and processes. ASM International, Metals Park, OH, pp 273–281Google Scholar
  4. 4.
    Guillemot JM, Dehaudt P, Ducos M (1986) Proceedings of 11th international thermal spraying conference, Pergamon Press, New York, pp 513–521Google Scholar
  5. 5.
    Inwood BC, Meyer, Grunow H, Chandler PE (1989) Proceedings of 12th thermal spraying conference, paper 91, vol 1. The Welding Institute, CambridgeGoogle Scholar
  6. 6.
    Sheppard LM (1990) Am Ceram Soc Bull 69:1012Google Scholar
  7. 7.
    Miller RA (1991) EPRI Report, AP-5078Google Scholar
  8. 8.
    Handbook of thermal spray technology, ASM International, Materials Park, OH, USA, 2003–2004, p 171Google Scholar
  9. 9.
    Ko PL, Robertson MF (2002) Wear 252:880CrossRefGoogle Scholar
  10. 10.
    Rastegar F, Richardson DE (1997) Surf Coat Technol 90:156CrossRefGoogle Scholar
  11. 11.
    Tucker RC (2002) Int J Powder Metall 38:45Google Scholar
  12. 12.
    Westergard R, Erickson LC, Axen N, Hawthrone HM, Hogmark S (1998) Tribol Int 31:271CrossRefGoogle Scholar
  13. 13.
    Yoma D, Brandl W, Marginean G (2001) Surf Coat Technol 138:149CrossRefGoogle Scholar
  14. 14.
    Fu YQ, Batchelor AW, Wang Y, Khor KA (1998) Wear 217:132CrossRefGoogle Scholar
  15. 15.
    Liao H, Normand B, Coddet C (2000) Surf Coat Technol 124:235CrossRefGoogle Scholar
  16. 16.
    Heimann RB (1996) Key Eng Mater 122–124:399CrossRefGoogle Scholar
  17. 17.
    Herman H, Sampath S, Stern KH (1996) Metallurgical and ceramic protective coatings. Chapman and Hall, London, p 263Google Scholar
  18. 18.
    Barbezat G, Nicoll AR, Sickinger A (1993) Wear 162–164:529CrossRefGoogle Scholar
  19. 19.
    Ramnath V, Jayaraman N (1989) Mater Sci Technol 5:382CrossRefGoogle Scholar
  20. 20.
    Fernandez JE, Rodriguez R, Wang Y, Vijande R, Rincon A (1995) Wear 181–183:417CrossRefGoogle Scholar
  21. 21.
    Kamo R, Assanis DN, Bryzik W (1989) Thin thermal barrier coatings for engines. Trans SAE, Paper No. 890143, pp 131–139Google Scholar
  22. 22.
    Miyains V, Matsuhisa T, Ozawa T (1989) Selective heat insulation of combustion chamber walls for a DI diesel engine with monolithic ceramics. Trans SAE, Paper No. 890141, pp 117–129Google Scholar
  23. 23.
    Kamo R (1997) Coatings for improving engine performance. Trans SAE, section-3, Paper No. 970204, pp 354–363Google Scholar
  24. 24.
    Vittal M, Borek JA (1999) Trans ASME 121:218Google Scholar
  25. 25.
    Hejwowski T, Weronski A (2002) Vacuum 65:427CrossRefGoogle Scholar
  26. 26.
    Prasad R, Samria NK (1989) Int J Mech Sci 31:10CrossRefGoogle Scholar
  27. 27.
    Xie Y, Hawthrone HM (1999) Wear 233–235:293CrossRefGoogle Scholar
  28. 28.
    Xie Y, Hawthrone HM (1999) Wear 225–235:90CrossRefGoogle Scholar
  29. 29.
    Erickson LC, Hawthrone HM, Troczynski T (2001) Wear 250:569CrossRefGoogle Scholar
  30. 30.
    Budinsky KG (1995) Wear 181–183:938CrossRefGoogle Scholar
  31. 31.
    Bolelli G, Cannilio V, Lusvarghi L, Ricco S (2006) Surf Coat Technol 200:2995CrossRefGoogle Scholar
  32. 32.
    Niemi K, Sorsa P, Vouristo PP, Mantyla T (1994) Proceedings of 7th international thermal spraying conference, Massachusetts, p 533Google Scholar
  33. 33.
    Abdel-Samad AA, El-Bahloul AMM, Lugscheider E, Rassoul SA (2000) J Mater Sci 35:3127. doi: CrossRefGoogle Scholar
  34. 34.
    Knuutila J, Ahmaniemi S, Leivo E, Sorsa P, Vuoristo PP, Mantyla T (1998) Proceedings of 15th international thermal spraying conference, France, p 145Google Scholar
  35. 35.
    Sarikaya O (2005) Surf Coat Technol 190:388CrossRefGoogle Scholar
  36. 36.
    Wang Y, Jiang S, Wang S, Xiao TD, Strutt PR (2000) Wear 237:176CrossRefGoogle Scholar
  37. 37.
    Tabor D (1997) Wear-A critical synoptic view. In: Glaeser WA et al (eds) Wear of materials. ASME, New York, p 1Google Scholar
  38. 38.
    Chu SJ, Moon H, Hockey BJ, Hsu SM (1992) Acta Metall Mater 40:185CrossRefGoogle Scholar
  39. 39.
    Ramalingam S, Wright PK (1981) J Eng Mater Technol 103:151CrossRefGoogle Scholar
  40. 40.
    Boas M, Bamberger M (1988) Wear 126:197CrossRefGoogle Scholar
  41. 41.
    Khruschov MM (1974) Wear 28:49CrossRefGoogle Scholar
  42. 42.
    Chu SJ, Hockey BJ, Lawn BR, Bennison SJ (1989) J Am Ceram Soc 72:1249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • N. Krishnamurthy
    • 1
    Email author
  • M. S. Murali
    • 2
  • P. G. Mukunda
    • 1
  • M. R. Ramesh
    • 3
  1. 1.Nitte Meenakshi Institute of TechnologyBangaloreIndia
  2. 2.R.V. College of EngineeringBangaloreIndia
  3. 3.Reva Institute of Technology and ManagementBangaloreIndia

Personalised recommendations