Advertisement

Journal of Materials Science

, Volume 45, Issue 3, pp 831–841 | Cite as

The characteristics of granular-bright facet in hydrogen pre-charged and uncharged high strength steels in the very high cycle fatigue regime

  • Y. D. LiEmail author
  • S. M. Chen
  • Y. B. Liu
  • Z. G. Yang
  • S. X. Li
  • W. J. Hui
  • Y. Q. Weng
Article

Abstract

In this study, the effect of hydrogen on fatigue strength of high strength steels in the very high cycle fatigue regime was further discussed. It is found that the calculated results of fatigue strength by modified Murakami’s expression are in good accordance with the experimental results in ±15% error band. The relationship between fatigue life (Nf) and the ratio of granular-bright facet (GBF) to inclusion size \( \left({\frac{{\sqrt {A_{\text{GBF}} } }}{{\sqrt {A_{\text{inc}} } }}}\right) \) for quenching and tempering (QT) specimens and pre-charged specimens by soaking (SK) and cathodic (CD) charging can be approximately expressed by \( {\frac{{\sqrt {A_{\text{GBF}} } }}{{\sqrt {A_{\text{inc}} } }}} = {\frac{{R_{\text{GBF}} }}{{R_{\text{inc}} }}} = 0. 2 5N_{\text{f}}^{ 0. 1 2 5} \); however, the value of \( {\frac{{\sqrt {A_{\text{GBF}} } }}{{\sqrt {A_{\text{inc}} } }}} \) for specimens pre-charged by high-pressure thermal hydrogen charging is obviously greater than that for QT specimens and pre-charged specimens by SK and CD charging at an identical Nf. The stress intensity factor range at the periphery of the GBF, ΔKGBF, was calculated in this work. It is found that the value of ΔKGBF is not a constant but approximately proportional to \( (\sqrt {A_{\text{GBF}} } )^{ 1/ 3} \). Besides it is also found that ΔKGBF decreases with the increase of hydrogen content.

Keywords

Fatigue Life Fatigue Strength Hydrogen Content High Strength Steel Inclusion Size 

Notes

Acknowledgement

This work was financially supported by key project of basic research of China (2004CB619100). The authors wish to thank Prof. L. J. Rong, Dr. J. Zhang, and Prof. G. Y. Li for their useful advice and experimental supports.

References

  1. 1.
    Yang ZG, Li SX, Zhang JM, Li GY, Li ZB, Hui WJ, Weng YQ (2004) Acta Mater 52:5235CrossRefGoogle Scholar
  2. 2.
    Murakami Y, Nomoto T, Ueda T (2000) Fatigue Fract Eng Mater Struct 23:893CrossRefGoogle Scholar
  3. 3.
    Murakami Y, Nomoto T, Ueda T (2000) Fatigue Fract Eng Mater Struct 23:903CrossRefGoogle Scholar
  4. 4.
    Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Amsterdam & Boston, p 273CrossRefGoogle Scholar
  5. 5.
    Shiozawa K, Lu L, Ishihara S (2001) Fatigue Fract Eng Mater Struct 24:781CrossRefGoogle Scholar
  6. 6.
    Shiozawa K, Morii Y, Nishino S, Lu L (2006) Int J Fatigue 28:1521CrossRefGoogle Scholar
  7. 7.
    Yang ZG, Li SX, Liu YB, Li YD, Li GY, Hui WJ, Weng YQ (2008) Int J Fatigue 30:1016CrossRefGoogle Scholar
  8. 8.
    Garet M, Brass AM, Haut C, Guttierez-Solana F (1998) Corros Sci 40:1073CrossRefGoogle Scholar
  9. 9.
    Oriani RA, Hirth JP, Smialowski M (1985) Hydrogen degradation of ferrous alloys. Noyes Publ, Park, RidgeGoogle Scholar
  10. 10.
    Li YD, Yang ZG, Li SX, Liu YB, Chen SM, Hui WJ, Weng YQ (2009) Adv Eng Mater 11(7):561CrossRefGoogle Scholar
  11. 11.
    Li YD, Yang ZG, Li SX, Li SX, Li GY, Hui WJ, Weng YQ (2008) Mater Sci Eng A 498:373CrossRefGoogle Scholar
  12. 12.
    Yang ZG, Zhang JM, Li SX, Li GY, Wang QY, Hui WJ, Weng YQ (2006) Mater Sci Eng A 427:167CrossRefGoogle Scholar
  13. 13.
    Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Amsterdam & Boston, p 94Google Scholar
  14. 14.
    Oriani RA, Hirth JP, Smialowski M (1985) Hydrogen degradation of ferrous alloys. Noyes Publ., Park Ridge, p 718Google Scholar
  15. 15.
    Onyevuenyi OA, Hirth JP (1981) Scr Met 115:113CrossRefGoogle Scholar
  16. 16.
    Chapetti MD, Tagawa T, Miyata T (2003) Mater Sci Eng A 356:236CrossRefGoogle Scholar
  17. 17.
    Bathias C (1999) Fatigue Fract Eng Mater Struct 22:559CrossRefGoogle Scholar
  18. 18.
    Murakami Y (2002) In: Proceeding of the eighth international fatigue congress (Fatigue 2002), EMAS Ltd., vol 5, p 2927Google Scholar
  19. 19.
    Murakami Y, Yokoyama NN, Kenichi T (2001) J Soc Mater Sci Jpn 50(11):1068CrossRefGoogle Scholar
  20. 20.
    Murakami Y, Yokoyama NN, Nagata J (2002) Fatigue Fract Eng Mater Struct 25:735CrossRefGoogle Scholar
  21. 21.
    Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Amsterdam & Boston, p 17Google Scholar
  22. 22.
    Sakai T, Sato Y, Oguma N (2002) Fatigue Fract Eng Mater Struct 25:765CrossRefGoogle Scholar
  23. 23.
    Nakajima M, Kamiya M, Itoga H, Tokaji K, Ko HN (2006) Int J Fatigue 28:1540CrossRefGoogle Scholar
  24. 24.
    Liu YB, Yang ZG, Li YD, Chen SM, Li SX, Hui WJ, Weng YQ (2008) Mater Sci Eng A 497:408CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Y. D. Li
    • 1
    Email author
  • S. M. Chen
    • 1
  • Y. B. Liu
    • 1
  • Z. G. Yang
    • 1
  • S. X. Li
    • 1
  • W. J. Hui
    • 2
  • Y. Q. Weng
    • 2
  1. 1.Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangPeople’s Republic of China
  2. 2.Central Iron and Steel Research InstituteBeijingPeople’s Republic of China

Personalised recommendations