Advertisement

Journal of Materials Science

, Volume 45, Issue 3, pp 818–823 | Cite as

Dislocation evolution in interstitial-free steel during fatigue near the endurance limit

  • Chia-Chang Shih
  • New-Jin Ho
  • Hsing-Lu HuangEmail author
Article

Abstract

In order to clear the relationship between dislocation development and endurance limit in fatigued body-centered cubic (BCC) metals, the automotive grade interstitial-free steel (IF steel) was fatigued near the endurance limit in this study. When cycling just below the endurance limit, the dislocation structures are mainly composed of loop patches, moreover, a few large dislocation cells and dislocation walls can also be found, and thus these structures have no significant effect on fatigue failure. However, once cyclic strain slightly exceeds the endurance limit, the small dislocation cells tend to develop near grain boundaries and triple junction of the grains, and which provide a more appropriate structure for crack growth than do large dislocation cells.

Keywords

Strain Amplitude Dislocation Structure Fatigue Failure Triple Junction Cyclic Strain 

Notes

Acknowledgements

This work is supported by the National Science Council of ROC under Contract NSC-96-2628-E-110-007. China Steel Corp. is acknowledged for providing the material.

References

  1. 1.
    Majumdar S, Bhattacharjee D, Ray KK (2008) Metall Mat Trans A 39:1676CrossRefGoogle Scholar
  2. 2.
    Fuchs HO, Stephens RI (1980) Metal fatigue in engineering. Wiley, New YorkGoogle Scholar
  3. 3.
    Narasaiah N, Chakraborti PC, Maiti R, Ray KK (2005) ISIJ Int 45:127CrossRefGoogle Scholar
  4. 4.
    Ma BT, Laird C, Leovich Radin A (1990) Mater Sci Eng A 123:159CrossRefGoogle Scholar
  5. 5.
    Liu W, Bayerlein M, Mughrabi H, Day A, Quested PN (1992) Acta Metall Mater 40:1763CrossRefGoogle Scholar
  6. 6.
    Ma BT, Laird C (1988) Mater Sci Eng A 102:247CrossRefGoogle Scholar
  7. 7.
    Toribio J, Kharin V (2006) J Mater Sci 41:6015. doi: https://doi.org/10.1007/s10853-006-0364-5 CrossRefGoogle Scholar
  8. 8.
    Chen CY, Huang JY, Yeh JJ (2003) J Mater Sci 38:817. doi: https://doi.org/10.1023/A:1021817216519 CrossRefGoogle Scholar
  9. 9.
    Dickson JI, Handfield L, L’espérance G (1986) Mater Sci Eng 81:477CrossRefGoogle Scholar
  10. 10.
    Huang HL, Ho NJ (2000) Mater Sci Eng A 279:254CrossRefGoogle Scholar
  11. 11.
    Kaneko Y, Ishikawa M, Hashimoto S (2005) Mater Sci Eng A 400–401:418CrossRefGoogle Scholar
  12. 12.
    Huang HL, Ho NJ (2001) Mater Sci Eng A 298:251CrossRefGoogle Scholar
  13. 13.
    Murakami Y (1980) Int J Fatigue 2:23CrossRefGoogle Scholar
  14. 14.
    Endo T, Murakami Y (1987) J Eng Mater Technol 109:124CrossRefGoogle Scholar
  15. 15.
    Figueroa JC, Bhat SP, Delaveaux R, Murzenski S, Laird C (1981) Acta Metall 29:1667CrossRefGoogle Scholar
  16. 16.
    Sommer C, Mughrabi H, Lochner D (1998) Acta Mater 46:1537CrossRefGoogle Scholar
  17. 17.
    Awatani J, Katagiri K, Nakai H (1978) Metall Trans 9A:111CrossRefGoogle Scholar
  18. 18.
    Ogura T, Masumoto T (1976) Trans Jpn Inst Met 17:733CrossRefGoogle Scholar
  19. 19.
    Awatani J, Katagiri K, Shiraishi T (1976) Metall Trans 7A:807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringNational Sun Yat-Sen UniversityKaohsiung, TaiwanChina
  2. 2.Department of Mechanical EngineeringChinese Military AcademyKaohsiungTaiwan

Personalised recommendations