The effect of cyclic bending on the mechanical properties and dislocation structures of drawn steel bars
- 128 Downloads
- 2 Citations
Abstract
Axisymmetric bar drawing increases the strength and decreases the ductility of metals. The recovery of these final mechanical properties often employs costly annealing processes. This paper discusses the possibility of controlling the mechanical properties of AISI 1010 steel bars through cyclic bending after one or two drawing passes and between these two successive passes. It is shown that cyclic bending softens the drawn material and increases its uniform elongation. The attending dislocation structures are presented and related to the associated mechanical properties. It is considered that cyclic bending is of interest in the industrial control of the final mechanical properties of drawn AISI 1010 steel bars.
Keywords
Molybdenum Disulfide Dislocation Structure Uniform Elongation Strain Path Change Final Mechanical PropertyNotes
Acknowledgements
The authors are thankful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), PRONEX/MCT (Programa de Apoio a Núcleos de Excelência do Ministério da Ciência e Tecnologia), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the financial support.
References
- 1.Shemenski RM (2008) Ferrous wire handbook. The Wire Association International, Inc., United States of AmericaGoogle Scholar
- 2.Coffin LF, Tavernelli JF (1959) Trans Metal Soc AIME 215:794–807Google Scholar
- 3.Lloyd DJ, Sang H (1979) Metall Trans 10A:1767–1772CrossRefGoogle Scholar
- 4.Wagoner RH, Laukonis JV (1983) Metall Trans 14A:1487–1495CrossRefGoogle Scholar
- 5.Doucet AB, Wagoner RH (1989) Metall Trans 20A:1483–1493CrossRefGoogle Scholar
- 6.Wilson DV, Zandrahimi M, Roberts WT (1990) Acta Metall Mater 38:215–226CrossRefGoogle Scholar
- 7.Armstrong PE, Hockett JE, Sherby OD (1982) Mech J Phys Solids 30:37–58CrossRefGoogle Scholar
- 8.Sarma VS, Padmanabhan KA (1997) Int J Fatigue 19:135–140CrossRefGoogle Scholar
- 9.Vieira MF, Fernandes JV, Chaparro B (2000) Mater Sci Eng A 284:64–69CrossRefGoogle Scholar
- 10.Barlat F, Ferreira Duarte JM, Gracio JJ, Lopes AB, Rauch EF (2003) Int J Plast 19:1–22. doi: https://doi.org/10.1016/S0749-6419(02)00020-7 CrossRefGoogle Scholar
- 11.Polakowski NH, Ripling EJ (1966) Strength and structure of engineering materials. Prentice-Hall, Inc., New Jersey, USAGoogle Scholar
- 12.Côrrea ECS, Aguilar MTP, Cetlin PR (2002) J Mater Process Technol 124:384. doi: https://doi.org/10.1016/S0924-0136(02)00265-0 CrossRefGoogle Scholar
- 13.Corrêa ECS, Aguilar MTP, Silva EMP, Cetlin PR (2003) J Mater Process Technol 142:282. doi: https://doi.org/10.1016/S0924-0136(03)00575-2 CrossRefGoogle Scholar
- 14.Richert M, Stüwe HP, Richert J, Pippan R, Mot C (2001) Mater Sci Eng A 301:237–243CrossRefGoogle Scholar
- 15.Bochniak W, Korbel AJ (2003) Mater Process Technol 134:120–134CrossRefGoogle Scholar
- 16.McGannom HE (1971) The making, shaping and treating of steel, 9th edn. United State Steel, United States of AmericaGoogle Scholar
- 17.Emmens WC, Boogaard AH (2009) J Mater Process Technol. doi: https://doi.org/10.1016/j.jmatprotec.2008.10.003 CrossRefGoogle Scholar
- 18.Emmens WC, Boogaard AH (2009) J Mater Process Technol. doi: https://doi.org/10.1016/j.jmatprotec.2009.04.023 CrossRefGoogle Scholar
- 19.Cirino R, Pertence AEM, Cetlin PR (1991) J Mater Shap Technol 9:213–219CrossRefGoogle Scholar
- 20.Pertence AEM, Cetlin PR, Smith Neto P (1994) J Mater Process Technol 47:127–132CrossRefGoogle Scholar
- 21.Dieter GE (1976) Mechanical metallurgy. McGraw-Hill, Tokyo, JapanGoogle Scholar
- 22.Strauven Y, Aernoudt E (1987) Acta Metall 35:1029–1036CrossRefGoogle Scholar
- 23.Corrêa ECS, Aguilar MTP, Monteiro WA, Cetlin PR (2006) Mater Sci Eng A. doi: https://doi.org/10.1016/j.msea.2006.01.049 CrossRefGoogle Scholar