Journal of Materials Science

, Volume 45, Issue 3, pp 783–792 | Cite as

Calibration of reaction parameters for the improvement of thermal stability and crystalline quality of multi-walled carbon nanotubes

  • Saveria SantangeloEmail author
  • Giacomo Messina
  • Giuliana Faggio
  • Maurizio Lanza
  • Alessandro Pistone
  • Candida Milone


The results of Raman analysis on multi-walled carbon nanotubes, prepared by catalysed chemical vapour deposition, are used as a guide for the calibration of the growth parameters, directed to improve crystalline quality and resulting thermal stability of nanotubes. Under selective growth conditions, the resistance to oxidation in air, as assessed by thermogravimetry measurements, is found to increase with the establishment of the long-range graphitic order in radial tube direction, as signalled by the Raman G′/G intensity ratio enhancement. In the range of parameters explored (synthesis temperature: 500–700 °C; growth atmosphere: 120 cc/min i-C4H10–H2–He mixture with He at 0–25%; i-C4H10/H2 flow ratio: 1–3; metal load and reduction temperature of Fe/Al2O3 catalysts: 17–40 wt%, and 500 and 700 °C, respectively), the best crystalline quality and the highest oxidative resistance are achieved by carrying out the synthesis reaction at 700 °C in 1:1:0 i-C4H10–H2–He atmosphere over 29 wt% Fe catalysts reduced at 700 °C. An additional relevant finding is the strong correlation evidenced between results of thermogravimetry and Raman analyses, suggesting the use of Raman spectroscopy for non-destructively evaluating the thermal stability of any graphitically ordered carbon species.


Synthesis Temperature Crystalline Quality Metal Load Raman Spectroscopy MWCNT Content 


  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jung JE, Lee NS, Park GS, Kim JM (1999) Appl Phys Lett 75:3129CrossRefGoogle Scholar
  3. 3.
    Lee SM, Lee YH (2000) Appl Phys Lett 76:2877CrossRefGoogle Scholar
  4. 4.
    Wang S (2004) Electroanalysis 17:7CrossRefGoogle Scholar
  5. 5.
    Raghuveer MS, Ganesan PG, D’Arcy-Gall J, Ramanath G, Marshall M, Petrov I (2004) Appl Phys Lett 84:4484CrossRefGoogle Scholar
  6. 6.
    Harrison BS, Atala A (2007) Biomaterials 28:344CrossRefGoogle Scholar
  7. 7.
    Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes. Wiley-VCH, BerlinGoogle Scholar
  8. 8.
    Lee K, Zhang J, Wang H, Wilkinson DP (2006) J Appl Electrochem 36:507CrossRefGoogle Scholar
  9. 9.
    Musumeci A, Silva G, Martens W, Waclawik E, Frost R (2007) J Therm Anal Calorim 88:885CrossRefGoogle Scholar
  10. 10.
    Trigueiro JP, Silva GG, Lavall RL, Furtado CA, Oliveira S, Ferlauto AS, Lacerda RG, Ladeira LO, Liu JW, Frost RL, George GA (2007) J Nanosci Nanotechnol 7:3477CrossRefGoogle Scholar
  11. 11.
    Silva GG, Musumeci AW, Gomes AP, Liu JW, Waclawik ER, George GA, Frost RL, Pimenta MA (2009) J Mater Sci 44:3498. doi: CrossRefGoogle Scholar
  12. 12.
    Gozzi D, Latini A, Lazzarini L (2008) Chem Mater 20:4126CrossRefGoogle Scholar
  13. 13.
    Zhao X, Ando Y, Qin LC, Kataura H, Maniwa Y, Saito R (2002) Appl Phys Lett 81:2550CrossRefGoogle Scholar
  14. 14.
    Santangelo S, Messina G, Donato MG, Lanza M, Milone C, Pistone A (2006) J Appl Phys 100:104311CrossRefGoogle Scholar
  15. 15.
    Donato MG, Galvagno S, Messina G, Milone C, Pistone A, Santangelo S (2007) Diam Relat Mater 16:1095CrossRefGoogle Scholar
  16. 16.
    Messina G, Santangelo S, Donato MG, Lanza M, Milone C, Pistone A, Galvagno S (2008) Phys Stat Sol 205:2422CrossRefGoogle Scholar
  17. 17.
    Li Q, Yan H, Zhang J, Liu Z (2004) Carbon 42:829CrossRefGoogle Scholar
  18. 18.
    Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Chem Phys Lett 317:497CrossRefGoogle Scholar
  19. 19.
    Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Nano Lett 2:615CrossRefGoogle Scholar
  20. 20.
    Pang LSK, Saxby JD, Chatfield SP (1993) J Phys Chem 97:6941CrossRefGoogle Scholar
  21. 21.
    Kuzmany H, Burger B, Thess A, Smalley R (1998) Carbon 36:709CrossRefGoogle Scholar
  22. 22.
    Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Phys Rep 409:47CrossRefGoogle Scholar
  23. 23.
    Kim YA, Hayashi T, Osawa K, Dresselhaus MS, Endo M (2003) Chem Phys Lett 380:319CrossRefGoogle Scholar
  24. 24.
    DiLeo RA, Landi BJ, Raffaelle RP (2007) J Appl Phys 101:64307CrossRefGoogle Scholar
  25. 25.
    Ferrari AC, Robertson J (2001) Phys Rev B 61:14095CrossRefGoogle Scholar
  26. 26.
    Ferrari AC, Robertson J (2001) Phys Rev B 64:75414CrossRefGoogle Scholar
  27. 27.
    Thomsen C, Reich S (2000) Phys Rev Lett 85:5214CrossRefGoogle Scholar
  28. 28.
    Tsoufis T, Xidas P, Jankovic L, Gournis D, Saranti A, Bakas T, Karakassides MA (2007) Diam Relat Mater 16:155CrossRefGoogle Scholar
  29. 29.
    Yu Z, Chen D, Tødtal B, Holmen A (2005) Catal Today 100:261CrossRefGoogle Scholar
  30. 30.
    Ducati C, Alexandrou I, Chhowalla M, Amaratunga GA, Robertson J (2002) J Appl Phys 92:3299CrossRefGoogle Scholar
  31. 31.
    Ducati C, Alexandrou I, Chhowalla M, Robertson J, Amaratunga GAJ (2004) J Appl Phys 95:6387CrossRefGoogle Scholar
  32. 32.
    Neri G, Visco AM, Galvagno S, Donato A, Panzalorto M (1999) Thermochim Acta 329:39CrossRefGoogle Scholar
  33. 33.
    Chen D, Christensen KO, Ochoa-Fernandez E, Yu Z, Tødtal B, Latorre N, Monzon A, Holmen A (2005) J Catal 229:82CrossRefGoogle Scholar
  34. 34.
    Juang ZY, Lai JF, Weng CH, Lee JH, Lai HJ, Lai TS, Tsai CH (2004) Diam Relat Mater 13:2140CrossRefGoogle Scholar
  35. 35.
    Belin T, Epron F (2005) Mater Sci Eng B 119:105CrossRefGoogle Scholar
  36. 36.
    Choi GS, Cho YS, Hong SY, Park JB, Son KH, Kim DJ (2002) J Appl Phys 91:3847CrossRefGoogle Scholar
  37. 37.
    Donato MG, Messina G, Milone C, Pistone A, Santangelo S (2008) Diam Relat Mater 17:318CrossRefGoogle Scholar
  38. 38.
    Roy D, Chhowalla M, Wang H, Sano N, Alexandrou I, Clyne TW, Amaratunga GAJ (2003) Chem Phys Lett 373:52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Saveria Santangelo
    • 1
    Email author
  • Giacomo Messina
    • 1
  • Giuliana Faggio
    • 1
  • Maurizio Lanza
    • 2
  • Alessandro Pistone
    • 3
  • Candida Milone
    • 3
  1. 1.Dipartimento di Meccanica e Materiali, Facoltà di IngegneriaUniversità “Mediterranea”Feo di Vito, Reggio CalabriaItaly
  2. 2.C.N.R., Istituto per i Processi Chimico-Fisici Sez. MessinaFaro Superiore, MessinaItaly
  3. 3.Dipartimento di Chimica Industriale e Ingegneria dei Materiali, Facoltà di IngegneriaUniversità di MessinaMessinaItaly

Personalised recommendations