Journal of Materials Science

, Volume 45, Issue 3, pp 765–770 | Cite as

A visualization of shear strain in processing by high-pressure torsion

  • Y. Cao
  • Y. B. Wang
  • S. N. Alhajeri
  • X. Z. LiaoEmail author
  • W. L. Zheng
  • S. P. Ringer
  • T. G. Langdon
  • Y. T. Zhu


Optical microscopy was used to examine the shear strain imposed in duplex stainless steel disks during processing by high-pressure torsion (HPT). The results show a double-swirl pattern emerges in the early stages of HPT and the two centres of the swirl move towards the centre of the disk with increasing revolutions. Local shear vortices also develop with increasing numbers of revolutions. At 20 revolutions, there is a uniform shear strain pattern throughout the disk and no local shear vortices.


Vortex Shear Strain Duplex Stainless Steel Local Vortex Large Shear Strain 



The authors are indebted to Professor J. T. Wang for his extensive discussion of swirling phenomena in nature and they are grateful for scientific and technical input and support from the Australian Microscopy & Microanalysis Research Facility node at the University of Sydney. This project was supported by the Australian Research Council [Grant No. DP0772880 (Y.C., Y.B.W., and X.Z.L.)], the US Army Research Office (Grant No.W911NF-08-1-0201, T.G.L.) and the U.S. DOE IPP program (Y.T.Z.).


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  3. 3.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  4. 4.
    Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5CrossRefGoogle Scholar
  5. 5.
    Wang YM, Chen MW, Zhou FH, Ma E (2002) Nature 419:912CrossRefGoogle Scholar
  6. 6.
    Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG (2000) Acta Mater 48:3633CrossRefGoogle Scholar
  7. 7.
    Bridgman PW (1943) J Appl Phys 14:273CrossRefGoogle Scholar
  8. 8.
    Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) J Appl Phys 96:636CrossRefGoogle Scholar
  9. 9.
    Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Appl Phys Lett 84:592CrossRefGoogle Scholar
  10. 10.
    Sabirov I, Pippan R (2005) Scripta Mater 52:1293CrossRefGoogle Scholar
  11. 11.
    Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753CrossRefGoogle Scholar
  12. 12.
    Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A 410:277CrossRefGoogle Scholar
  13. 13.
    Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203CrossRefGoogle Scholar
  14. 14.
    Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168CrossRefGoogle Scholar
  15. 15.
    Todaka Y, Umemoto M, Yin J, Liu Z, Tsuchiya K (2007) Mater Sci Eng A 462:264CrossRefGoogle Scholar
  16. 16.
    Estrin Y, Molotnikov A, Davies CHJ, Lapovok RJ (2008) J Mech Phys Solids 56:1186CrossRefGoogle Scholar
  17. 17.
    Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Mater Sci Eng A 290:128CrossRefGoogle Scholar
  18. 18.
    Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753CrossRefGoogle Scholar
  19. 19.
    Yang Z, Welzel U (2005) Mater Lett 59:3406CrossRefGoogle Scholar
  20. 20.
    Kai M, Horita Z, Langdon TG (2008) Mater Sci Eng A 488:117CrossRefGoogle Scholar
  21. 21.
    Rajulapati KV, Scattergood RO, Murty KL, Horita Z, Langdon TG, Koch CC (2008) Metall Mater Trans A 39A:2528CrossRefGoogle Scholar
  22. 22.
    Johansson J, Odén M (2000) Metall Mater Trans A 31A:1557CrossRefGoogle Scholar
  23. 23.
    Edalati K, Horita Z, Langdon TG (2009) Scripta Mater 60:9CrossRefGoogle Scholar
  24. 24.
    Ivanisenko Y, Lojkowski W, Valiev RZ, Fecht H-J (2003) Acta Mater 51:5555CrossRefGoogle Scholar
  25. 25.
    Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A 393:344CrossRefGoogle Scholar
  26. 26.
    Kawasaki M, Langdon TG (2008) Mater Sci Eng A 498:341CrossRefGoogle Scholar
  27. 27.
    Bertin G (2000) Dynamics of galaxies. Cambridge University Press, Cambridge, UKGoogle Scholar
  28. 28.
    Binney J, Tremaine S (2008) In: Spergel DN (ed) Galacitic dynamics, 2nd edn. Princeton University Press, Princeton, NJ, USAGoogle Scholar
  29. 29.
    Van Dyke M (1982) An album of fluid motion. The Parabolic Press, Stanford, CA, USAGoogle Scholar
  30. 30.
    Zeytounian RKh (2004) Theory and applications of viscous fluid flows. Springer-Verlag, Berlin, GermanyCrossRefGoogle Scholar
  31. 31.
    Murr LE, Li Y, Flores RD, Trillo EA, McClure JC (1998) Mat Res Innov 2:150CrossRefGoogle Scholar
  32. 32.
    Zhang HW, Zhang Z, Chen JT (2007) J Mater Process Technol 183:62CrossRefGoogle Scholar
  33. 33.
    Zhang Z, Chen JT (2008) J Mater Sci 43:222. doi: CrossRefGoogle Scholar
  34. 34.
    Guduru PR, Ravichandran G, Rosakis AJ (2001) Phys Rev E 64:036128CrossRefGoogle Scholar
  35. 35.
    Kelvin (1871) Lord (William Thomson) Phil Mag 42: 362Google Scholar
  36. 36.
    von Helmholtz HLF (1868) Monthly Reports of the Royal Prussian Academy of Philosophy (Berlin) 23:215Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Y. Cao
    • 1
  • Y. B. Wang
    • 1
  • S. N. Alhajeri
    • 2
  • X. Z. Liao
    • 1
    Email author
  • W. L. Zheng
    • 3
  • S. P. Ringer
    • 4
  • T. G. Langdon
    • 2
    • 5
  • Y. T. Zhu
    • 6
  1. 1.School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneySydneyAustralia
  2. 2.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK
  3. 3.Shanghai Research Institute of MaterialsShanghaiChina
  4. 4.Australian Key Centre for Microscopy & MicroanalysisThe University of SydneySydneyAustralia
  5. 5.Departments of Aerospace and Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  6. 6.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations