Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 552–556 | Cite as

Mesolamellar phases containing [Fe(CN)6]3− anion

  • Vo VienEmail author
  • Sung-Jin KimEmail author
Article
  • 71 Downloads

Abstract

The mesostructured lamellar phases with the general formula [CnH2n+1N(CH3)3]3[Fe(CN)6] (n = 14, 16, 18) were prepared by ion-exchange/precipitation reaction of alkyltrimethylammonium surfactants and K3[Fe(CN)6] complex in aqueous medium. The phases were characterized using powder X-ray diffraction, high-resolution transmission electron microscopy, IR spectroscopy, thermogravimetric, and differential scanning calorimetry means. The results obtained all support a proposed model of crystal structure for these materials, in which the layers are constructed by monolayer of the discrete complex molecules, and the surfactants tails of opposite head groups deeply penetrate and arrange with a tilt angle of 63°.

Keywords

Surfactant Differential Scanning Calorimetry Lamellar Phasis PXRD Pattern Differential Scanning Calorimetry Experiment 

Notes

Acknowledgements

This work was supported by National Foundation for Science and Technology Development (NAFOSTED, 104.03.06.09), and by National Research Foundation of Korea Grant funded by the Korean Government (20090063004) and Seoul R&BD Program (10816).

References

  1. 1.
    Kresge CT, Leonowicz M, Roth WJ, Vartuli JC, Beck JC (1992) Nature 359:710CrossRefGoogle Scholar
  2. 2.
    Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147CrossRefGoogle Scholar
  3. 3.
    Lee HI, Pak C, Yi SH, Shon JK, Kim SS, So BG, Chang H, Yie JE, Kwon YU, Kim JM (2005) J Mater Chem 15:4711CrossRefGoogle Scholar
  4. 4.
    MacLachlan MJ, Coombs N, Ozin GA (1999) Nature 397:681CrossRefGoogle Scholar
  5. 5.
    Trikalitis PN, Rangan KK, Bakas T, Kanatzidis MG (2001) Nature 410:671CrossRefGoogle Scholar
  6. 6.
    Korlann SD, Riley AE, Kirsch BL, Mun BS, Tolbert SH (2005) J Am Chem Soc 127:12516CrossRefGoogle Scholar
  7. 7.
    Bonhomme F, Kanatzidis MG (1998) Chem Mater 10:1153CrossRefGoogle Scholar
  8. 8.
    Wachhold M, Kanatzidis MG (2000) Chem Mater 12:2914CrossRefGoogle Scholar
  9. 9.
    Rangan KK, Kanatzidis MG (2004) Inorg Chim Acta 357:4036CrossRefGoogle Scholar
  10. 10.
    Li J, Marler B, Kessler H, Soulard M, Kallus S (1997) Inorg Chem 36:4697CrossRefGoogle Scholar
  11. 11.
    Janauer GG, Dobley AD, Zavalij PY, Whittingham MS (1997) Chem Mater 9:647CrossRefGoogle Scholar
  12. 12.
    Janauer GG, Dobley A, Guo J, Zavalij P, Whittingham MS (1996) Chem Mater 8:2096CrossRefGoogle Scholar
  13. 13.
    Nyman M, Ingersoll D, Singh S, Bonhomme F, Alam TM, Brinker CJ, Rodriguez MA (2005) Chem Mater 17:2885CrossRefGoogle Scholar
  14. 14.
    Suh MJ, Vien V, Huh S, Kim YM, Kim SJ (2008) Eur J Inorg Chem 686Google Scholar
  15. 15.
    Stein A, Fendorf M, Jarvie TP, Mueller KT, Benesi AJ, Mallouk TE (1995) Chem Mater 7:304CrossRefGoogle Scholar
  16. 16.
    Taguchi A, Abe T, Iwamoto M (1998) Micropor Mesopor Mater 21:387CrossRefGoogle Scholar
  17. 17.
    Do J, Jacobson AJ (2001) Chem Mater 13:2436CrossRefGoogle Scholar
  18. 18.
    Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New YorkGoogle Scholar
  19. 19.
    Bennett MV, Beauvais LG, Shores MP, Long JR (2001) J Am Chem Soc 123:8022CrossRefGoogle Scholar
  20. 20.
    Vaia RA, Teukolsky RK, Giannelis EP (1994) Chem Mater 6:1017CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryQuy Nhon UniversityQuy Nhon CityVietnam
  2. 2.Division of Nano Sciences and Department of ChemistryEwha Womans UniversitySeoulKorea

Personalised recommendations