Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 546–551 | Cite as

Influence of annealing on the electrochemical behavior of finemet amorphous and nanocrystalline alloy

  • Hossein Asghari Shivaee
  • Ahmad Nozad GolikandEmail author
  • Hamid Reza Madaah Hosseini
  • Mehdi Asgari
Article

Abstract

The electrochemical corrosion behavior of finemet alloy at various heat treatment temperatures was investigated. Thermal behavior and structural changes were studied using differential scanning calorimetry and X-ray diffractometry, respectively. The electrochemical corrosion of amorphous and annealed samples was investigated in 0.10 M NaOH solution using electrochemical impedance spectroscopy and linear sweep voltammetery. Changes in morphology of the samples before and after corrosion were characterized using optical microscope. The results showed that structural relaxation and nanocrystallization during the heat treatment improved corrosion behavior of the alloy. The heat-treated alloy at 650 °C showed a corrosion rate of 1.37 × 10−8 A cm−2 and a positive shift of +417 mV in the corrosion potential compared to the amorphous alloy. Also, the heat-treated alloy at 650 °C showed a higher charge transfer resistance up to 50 kΩ due to corrosion resistance, compared with amorphous sample that showed a charge transfer resistance of 0.5 kΩ.

Keywords

Electrochemical Impedance Spectroscopy Amorphous Alloy Charge Transfer Resistance Structural Relaxation Corrosion Current Density 

References

  1. 1.
    Cheng JB, Liang XB, Xu BS, Wu YX (2009) J Mater Sci 44:3356. doi: https://doi.org/10.1007/s10853-009-3436-5 CrossRefGoogle Scholar
  2. 2.
    Fujii H, Yardley VA, Matsuzaki T, Tsurekawa S (2008) J Mater Sci 43:3837. doi: https://doi.org/10.1007/s10853-007-2220-7 CrossRefGoogle Scholar
  3. 3.
    Zhang YR, Ramanujan RV (2006) J Mater Sci 41:5292. doi: https://doi.org/10.1007/s10853-006-0263-9 CrossRefGoogle Scholar
  4. 4.
    Yoshizawa Y, Oguma S, Yamauchi K (1988) J Appl Phys 64:6044CrossRefGoogle Scholar
  5. 5.
    McHenry ME, Willard MA, Laughlin DE (1999) Prog Mater Sci 44:291CrossRefGoogle Scholar
  6. 6.
    Herzer G (1996) J Magn Magn Mater 157–158:133CrossRefGoogle Scholar
  7. 7.
    Herzer G (1997) Handbook of magnetic materials, vol 10. Elsevier, Amsterdam, pp 417–461Google Scholar
  8. 8.
    Souza CAC, Politi FS, May JE, Kuri SE, Kiminami CS (1999) J Non-Cryst Solids 247:69CrossRefGoogle Scholar
  9. 9.
    May JE, Souza CAC, Morelli CL, Mariano NA, Kuri SE (2005) J Alloys Compd 390:106CrossRefGoogle Scholar
  10. 10.
    Mariano NA, Souza CAC, May JE, Kuri SE (2003) Mater Sci Eng 354:1–5CrossRefGoogle Scholar
  11. 11.
    Petzold J (2002) J Magn Magn Mater 242–245:84CrossRefGoogle Scholar
  12. 12.
    Hasegawa R (2006) J Magn Magn Mater 304:187CrossRefGoogle Scholar
  13. 13.
    Altube A et al (2003) Corros Sci 45:685CrossRefGoogle Scholar
  14. 14.
    Vara G et al (2007) J Non-Cryst Solids 353:1008CrossRefGoogle Scholar
  15. 15.
    Marzo FF et al (2007) J Non-Cryst Solids 353:875CrossRefGoogle Scholar
  16. 16.
    Marzo FF et al (2002) Electrochim Acta 47:2265CrossRefGoogle Scholar
  17. 17.
    Altube A, Pierna AR (2004) Electrochim Acta 49:303CrossRefGoogle Scholar
  18. 18.
    Rammelt U, Reinhard G (1988) Electrochim Acta 35–6:L199Google Scholar
  19. 19.
    Park JR, Macdonald DD (1983) Corros Sci 23:295CrossRefGoogle Scholar
  20. 20.
    Garcia JA et al (2006) J Non-Cryst Solids 352:5118CrossRefGoogle Scholar
  21. 21.
    Fiorillo F (2004) Measurement and characterization of magnetic materials. Elsevier, Amsterdam, pp 51–60Google Scholar
  22. 22.
    Kaevitser EV (2004) Mater Sci Eng A 375–377:683CrossRefGoogle Scholar
  23. 23.
    Macdonald DD, Mckubre MCH (1982) Modern aspects of electrochemistry, vol 14. Plenum Press, New York, p 61CrossRefGoogle Scholar
  24. 24.
    Miguel C, Kaloshkin S, Gonzalez J, Zhukov A (2003) J Non-Cryst Solids 329:63CrossRefGoogle Scholar
  25. 25.
    Lovas A, Kiss LF, Balogh I (2000) J Magn Magn Mater 215–216:463CrossRefGoogle Scholar
  26. 26.
    Poole CP (2003) Introduction to nanotechnology. Wiley, Hoboken, NJ, p 147Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hossein Asghari Shivaee
    • 1
  • Ahmad Nozad Golikand
    • 2
    Email author
  • Hamid Reza Madaah Hosseini
    • 3
  • Mehdi Asgari
    • 2
  1. 1.Institute for Nanoscience and TechnologySharif University of TechnologyTehranIran
  2. 2.Electrochemistry and Fuel Cell LabNSTRITehranIran
  3. 3.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations