Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 533–545 | Cite as

Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium

  • Rashmi Chourasia
  • Ashish Bohre
  • Ritu D. Ambastha
  • O. P. ShrivastavaEmail author
  • P. K. Wattal
Article

Abstract

Sodium zirconium phosphate (NZP) is a potential material for immobilization of nuclear effluents. The existence of cesium containing NZP structure was determined on the basis of crystal data of solid solution. It was found that up to ~9.0 wt% of cesium could be loaded into NZP formulations without significant changes of the three-dimensional framework structure. The crystal chemistry of Na1−xCsxZr2P3O12 (x = 0.1–0.4) has been investigated using General Structure Analysis System programming. The CsNZP phases crystallize in the space group R-3c and Z = 6. Powder diffraction data have been subjected to Rietveld refinement to arrive at a satisfactory structural convergence of R-factors. The unit cell volume and polyhedral (ZrO6 and PO4) distortion increase with rise in the mole% of Cs+ in the NZP matrix. The PO4 stretching and bending vibrations in the infrared region have been assigned. SEM, TEM, and EDAX analysis provide analytical evidence of cesium in the matrix.

Keywords

Cesium Zirconium Phosphate Waste Form General Structure Analysis System Sodium Zirconium Phosphate 

Notes

Acknowledgements

The authors are grateful to the Department of Science and Technology (DST), New Delhi, Government of India, for funding research Project Number SR/S3/ME/20/2005-SERC-Engg in its SERC scheme. Thanks are due to sophisticated analytical instrument facility, IIT, Bombay, for TEM analysis and department of Metallurgical Engineering and Material Science IIT, Bombay, for XRD analysis.

References

  1. 1.
    Hawkins HT, Scheetz BE (1996) In: Proceedings of the material research society 1996, fall meeting, Boston, MA, 2–6 DecemberGoogle Scholar
  2. 2.
    Pet’kov VI, Sukhanov MV (2003) Czechoslovak J Phys 53:A671CrossRefGoogle Scholar
  3. 3.
    Hirose Y, Fukasawa T, Agrawal DK, Scheetz BE, Nageswaran R, Curtis JA, Limaye SY (1999) In: WM 1999 conferenceGoogle Scholar
  4. 4.
    Scheetz BE, Agarwal DK, Breval E, Roy R (1994) Waste Manage 14(6):489CrossRefGoogle Scholar
  5. 5.
    Donald IW, Metcalfe BL, Taylor RNJ (1997) J Mater Sci 32:5851. doi: https://doi.org/10.1023/A:1018646507438 CrossRefGoogle Scholar
  6. 6.
    Shrivastava OP, Chourasia R (2007) J Hazard Mater 153:285CrossRefGoogle Scholar
  7. 7.
    Chourasia R, Shrivastava OP, Wattal PK (2009) J Alloys Compd 473(1–2):579CrossRefGoogle Scholar
  8. 8.
    Lide DR (1992–1993) Handbook of chemistry and physics, Sect. 11, 73rd ed. CRC Press, Boca Raton, FLGoogle Scholar
  9. 9.
    Renaud P, Beaugelin K, Maubert H, Ledenvic P (1997) Cons′equences radiologiques et dosim′etriques de l’accident de Tchernobyl en France (Rapport IPSN 97-03, IPSN, France, 1997)Google Scholar
  10. 10.
    Rustam R, Vance ER, Alamo J (1982) Mater Res Bull 17:585CrossRefGoogle Scholar
  11. 11.
    JCPDS Powder diffraction data file no. 71-0959 (2000) compiled by International Center for Diffraction Data, USAGoogle Scholar
  12. 12.
    Rietveld HM (1996) J Appl Cryst 2:65CrossRefGoogle Scholar
  13. 13.
    Larson AC, Von Dreele RB (2000) General structure analysis system technical manual. LANSCE, MS-H805, Los Almos National Laboratory LAUR 86-748Google Scholar
  14. 14.
    Kojitani H, Kido M, Akaogi M (2005) Phys Chem Miner 32:290CrossRefGoogle Scholar
  15. 15.
    Verissimo C, Garrido FMS, Alves OL, Calle P, Juarez AM, Iglesias JE, Rojo JM (1997) Solid State Ionics 100:127CrossRefGoogle Scholar
  16. 16.
    Govindan Kutty KV, Asuvathraman R, Sridhran R (1998) J Mater Sci 33:4007. doi: https://doi.org/10.1023/A:1004661132398 CrossRefGoogle Scholar
  17. 17.
    Lenain GE, McKinstry HA, Limaye SY, Woodward A (1984) Mater Res Bull 19:1451CrossRefGoogle Scholar
  18. 18.
    Petíkov VI, Orlova AI, Kazantsev GN, Samoilov SG, Spiridonova ML (2001) J Therm Anal Calorim 66:623CrossRefGoogle Scholar
  19. 19.
    Oota T, Yamai I (1986) J Am Ceram Soc 69(1):1CrossRefGoogle Scholar
  20. 20.
    Lenain GE, McKinstry HA, Alamo J, Agrawal DK (1987) J Mater Sci 22:17. doi: https://doi.org/10.1007/BF01160546 CrossRefGoogle Scholar
  21. 21.
    James A, Rustam R (1986) J Mater Sci 21:444. doi: https://doi.org/10.1007/BF01145507 CrossRefGoogle Scholar
  22. 22.
    Shannon RD (1976) Acta Crystallogr A 32:751CrossRefGoogle Scholar
  23. 23.
    Shrivastava OP, Chourasia R (2008) J Chem Crystallogr 38:357CrossRefGoogle Scholar
  24. 24.
    Brown ID, Shannon RD (1973) Acta Crystallogr A29:266CrossRefGoogle Scholar
  25. 25.
    Breese NE, Keeffe MO (1991) Acta Crystallogr B47:192CrossRefGoogle Scholar
  26. 26.
    Shrivastava OP, Chourasia R, Kumar N (2008) Ann Nucl Energy 35–36:1147CrossRefGoogle Scholar
  27. 27.
    Buvaneswari G, Varadaraju UV (1999) J Solid State Chem 145:227CrossRefGoogle Scholar
  28. 28.
    Barj M, Perthuis H, Colomban Ph (1983) Solid State Ionics 11:157CrossRefGoogle Scholar
  29. 29.
    Mbandza A, Bordes E, Courtine P (1985) Mater Res Bull 20:251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rashmi Chourasia
    • 1
  • Ashish Bohre
    • 1
  • Ritu D. Ambastha
    • 2
  • O. P. Shrivastava
    • 1
    Email author
  • P. K. Wattal
    • 2
  1. 1.Department of ChemistryDr H.S. Gour UniversitySagarIndia
  2. 2.Nuclear Recycle Group, Back End Technology Development DivisionB.A.R.CMumbaiIndia

Personalised recommendations