Journal of Materials Science

, Volume 45, Issue 2, pp 511–522 | Cite as

The morphology and phase mixing studies on poly(ester–urethane) during shape memory cycle

  • I. M. Pereira
  • R. L. OréficeEmail author


Three series of shape memory poly(ester–urethane) with varying hard-segment contents were synthesized. The materials were designed to display a three-phase structure consisting of a disperse phase formed by crystallites and hard domains embedded in an amorphous matrix. The initial undeformed morphology was investigated using techniques such as modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, and wide angle X-ray scattering. These techniques were used to determine the phase separation, hydrogen-bonding structure, and crystalline fraction of the specimens prior to thermo-mechanical treatments. The obtained information was correlated with small angle X-ray scattering investigations of morphological changes that occurred during shape memory cycling. The deformation cycle led to the formation of an oriented nanostructure derived from chain alignment. The nanostructure recovered was observed to be triggered by the melting of the crystallites and bulk incompatibility. A relationship between the ability of the studied poly(ester–urethane) specimens to recover their original shape and their original nanostructure was determined.


Shape Memory Hard Segment Soft Segment DMPA Shape Memory Property 



The authors acknowledge financial support from the following institutions: the National Council for Scientific and Technological Development (CNPq), a foundation linked to the Ministry of Science and Technology (MCT) of the Brazilian Government; the State of Minas Gerais Research Foundation (FAPEMIG); and the National Synchrotron Light Laboratory (LNLS-Brazil) for the use of the SAXS beamline facilities.


  1. 1.
    Szycher M (1999) Szycher’s handbook of polyurethanes, chap 1.1–1.6. CRC Press, LondonGoogle Scholar
  2. 2.
    Oertel G (1994) Polyurethane handbook, 2nd edn. Hanser Publisher, New York, pp 11–45Google Scholar
  3. 3.
    Pan H, Chen D (2007) Eur Polym J 43:3766CrossRefGoogle Scholar
  4. 4.
    Chen G, Ma Y, Zheng X et al (2007) J Polym Sci B 45(6):654CrossRefGoogle Scholar
  5. 5.
    Lendlein A, Langer R (2002) Science 296(5573):1673CrossRefGoogle Scholar
  6. 6.
    Wilson TS, Small W, Benett WJ et al (2005) In: Proc SPIE Int Soc Opt Eng, 60070R-1-8Google Scholar
  7. 7.
    Miaudet P, Derre A, Maugey M et al (2007) Science 318:1294CrossRefGoogle Scholar
  8. 8.
    Gall K, Dunn ML, Liu YP, Stefanic G, Balzar (2004) Appl Polym Sci 85(2):290Google Scholar
  9. 9.
    Gall K, Kreiner P, Turner D, Hulse M (2004) J Micro Sys 13(3):472CrossRefGoogle Scholar
  10. 10.
    Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier Science, Amsterdam, p 121Google Scholar
  11. 11.
    Oliveira W, Glasser WG (1994) Macromolecules 27:5CrossRefGoogle Scholar
  12. 12.
    Bao H, Zhang Z, Ying S (1996) Polymer 37(13):2751CrossRefGoogle Scholar
  13. 13.
    Seymour RW, Cooper RL (1973) Macromolecules 6:48CrossRefGoogle Scholar
  14. 14.
    Gunes IS, Jana SC (2008) J Nanosci Nanotechnol 8(4):1616CrossRefGoogle Scholar
  15. 15.
    Gorna K, Gogolewski S (2002) Polym Degrad Stab 75(1):113CrossRefGoogle Scholar
  16. 16.
    Yeganeh H, Lakouraj MM, Jamshidi S (2005) Eur Polym J 41(10):2370CrossRefGoogle Scholar
  17. 17.
    Jiang X, Li JH, Ding MM et al (2007) Eur Polym J 43(5):1838CrossRefGoogle Scholar
  18. 18.
    Ayres E, Oréfice RL, Yoshida MI (2007) Eur Polym J 43(8):3510CrossRefGoogle Scholar
  19. 19.
    Coates JP (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, UK, pp 10815–10837Google Scholar
  20. 20.
    Marcos-Fernández A, Abraham GA, Valentín JL, San Román J (2006) Polymer 47(3):785CrossRefGoogle Scholar
  21. 21.
    Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) Polymer 47(11):3814CrossRefGoogle Scholar
  22. 22.
    Cho JW, Lee SH (2004) Eur Polym J 40(7):1343CrossRefGoogle Scholar
  23. 23.
    Huang SL, Lai JY (1997) Eur Polym J 33(10–12):1563CrossRefGoogle Scholar
  24. 24.
    Liu Y, Pan C (1998) Eur Polym J 34(5–6):621Google Scholar
  25. 25.
    Nakamae K, Nishino T, Asaoka S et al (1999) Int J Adhes Adhes 19(5):345CrossRefGoogle Scholar
  26. 26.
    Pompe G, Pohlers A, Pötschke P, Pionteck J (1998) Polymer 39(21):5147CrossRefGoogle Scholar
  27. 27.
    Lin JR, Chen LW (1998) J Appl Polym Sci 69(8):1563CrossRefGoogle Scholar
  28. 28.
    Li YJ, Gao T, Liu J et al (1992) Macromolecules 25(26):7365CrossRefGoogle Scholar
  29. 29.
    Pretsch T, Jakob I, Werner M (2009) Polym Degrad Stab 94:61CrossRefGoogle Scholar
  30. 30.
    Tien YI, Wei KH (2001) Polymer 42(7):3213CrossRefGoogle Scholar
  31. 31.
    Jia QM, Zheng M, Zhu YC et al (2007) Eur Polym J 43(1):35CrossRefGoogle Scholar
  32. 32.
    Kim BK, Lee SY, Xu M (1996) Polymer 37(26):5781CrossRefGoogle Scholar
  33. 33.
    Xu J, Shi W, Pang W (2006) Polymer 47(1):457CrossRefGoogle Scholar
  34. 34.
    Charnetskaya AG, Polizos G, Shtompel VI et al (2003) Eur Polym J 39(11):2167CrossRefGoogle Scholar
  35. 35.
    Wang ZG, Hsiao BS, Fu BX et al (2000) Polymer 41(5):1791CrossRefGoogle Scholar
  36. 36.
    Wang SH, Zhang Y, Ren WT et al (2005) Polym Test 24(6):766CrossRefGoogle Scholar
  37. 37.
    Jiang ZY, Tang YJ, Men YF et al (2007) Macromolecules 40(20):7263CrossRefGoogle Scholar
  38. 38.
    Chang SL, Yu TL, Huang CC, Chen WC, Linliu K, Lin TL (1998) Polymer 39(15):3479CrossRefGoogle Scholar
  39. 39.
    Li YJ, Kang WX, Stoffer JO et al (1994) Macromolecules 27(2):612CrossRefGoogle Scholar
  40. 40.
    Tang YJ, Jiang ZY, Men YF et al (2007) Polymer 48(17):5125CrossRefGoogle Scholar
  41. 41.
    Lee BS, Chun BC, Chung YC et al (2001) Macromolecules 34(18):6431CrossRefGoogle Scholar
  42. 42.
    Yang JH, Chun BC, Chung YC, Cho JH (2003) Polymer 44(11):3Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Federal Center of Technological Education of Minas GeraisTimoteoBrazil
  2. 2.Department of MetallurgyTimóteoBrazil
  3. 3.Department of Metallurgical and Materials EngineeringFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations