Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 467–474 | Cite as

Mechanism of dispersing an active component into a polymeric carrier by the SEDS-PA process

  • Wenzhi HeEmail author
  • Zhaohua Jiang
  • Quanling Suo
  • Guangming Li
Article

Abstract

Supercritical fluid anti-solvent precipitation has been attracting widespread attention due to its distinctive advantages, and has exhibited a great perspective of application in the production of polymer-based composite micro- and nanoparticles. In this study, based on the experiment results of production of carotene-loaded polymer PEG or l-PLA composite microparticles using solution enhanced dispersion by supercritical fluids through prefilming atomization (SEDS-PA) process, the possible mechanism of dispersing an active component in a polymeric carrier by the SEDS-PA co-precipitation was deduced. The mechanism is mainly the formation and growth of the active component (carotene) nuclei in the polymer-rich phase induced by mass transfer and phase transition, and the polymer capture/encapsulation of active component particles generated in an expanded solution droplet caused by the collision among these particles and polymer-rich phase. There are four factors that could influence the sizes and morphologies of the SEDS-PA precipitates. They are, respectively, atomization of solution, prompt and persistent super-saturation of the expanded droplets, breakup of the expanded droplets with interstices and the particle agglomeration caused by collision in the SEDS-PA process. The integrated effect of these factors dominates the sizes and morphologies of the SEDS precipitates.

Keywords

Active Component Carotene Supercritical Fluid Baicalin Polymeric Carrier 

Notes

Acknowledgements

The authors gratefully acknowledge the financial supports of the national natural science foundation of China (Grant No. 20266004) of 863 project of China (Grant No. 2003AA2Z3533) and of natural science foundation of Inner Mongolia (China) (Grant No. 200308020203).

References

  1. 1.
    Langer R (1990) Science 249:1527CrossRefGoogle Scholar
  2. 2.
    Elvassore N, Bertucco A, Caliceti P (2001) Ind Eng Chem Res 40:795CrossRefGoogle Scholar
  3. 3.
    Reverchon E, Della Porta G (2003) Chem Eng Technol 26:840CrossRefGoogle Scholar
  4. 4.
    Debenedetti P, Tom JW, Yeo SD, Lim GB (1993) J Control Release 24:27CrossRefGoogle Scholar
  5. 5.
    Mishima K, Matsuyama K, Tanabe D, Yamauchi S (2000) AIChE J 46:857CrossRefGoogle Scholar
  6. 6.
    Matsuyama K, Mishima K, Hayashi KI, Ishikawa H, Matsuyama H, Harada T (2003) J Appl Polym Sci 89:742CrossRefGoogle Scholar
  7. 7.
    Pasquali I, Bettini R (2008) Int J Pharm 364:176CrossRefGoogle Scholar
  8. 8.
    Benedetti L, Bertucco A, Pallado P (1997) Biotechnol Bioeng 53:232CrossRefGoogle Scholar
  9. 9.
    Yeo SD, Kim MS, Lee JC (2003) J Supercrit Fluids 25:143CrossRefGoogle Scholar
  10. 10.
    Heater KJ, Tomasko DL (1998) J Supercrit Fluids 14:55CrossRefGoogle Scholar
  11. 11.
    Liu ZM, Wang JQ, Song LP, Yang GY, Han BX (2002) J Supercrit Fluids 24(1):1CrossRefGoogle Scholar
  12. 12.
    Reverchon E, Marco IDE, Caputo G, Della Porta G (2003) J Supercrit Fluids 26:1CrossRefGoogle Scholar
  13. 13.
    Reverchon E, De Marco I, Della Porta G (2002) J Supercrit Fluids 23:81CrossRefGoogle Scholar
  14. 14.
    Sarkari M, Darrat I, Knutson BL (2000) AIChE J 46:1850CrossRefGoogle Scholar
  15. 15.
    Luna-Barcenas G, Kanakia SK, Sanchez IC, Johnston KP (1995) Polymer 36:3173CrossRefGoogle Scholar
  16. 16.
    Bodemeier R, Wang WH, Dixon DJ, Mawson S, Johnston KP (1995) Pharm Res 12:1211CrossRefGoogle Scholar
  17. 17.
    Bleich J, Müller BW, Wabmus W (1993) Int J Pharm 97:111CrossRefGoogle Scholar
  18. 18.
    Mawson S, Kanakia S, Johnston KP (1997) J Appl Polym Sci 64:2105CrossRefGoogle Scholar
  19. 19.
    Jarmer DJ, Lengsfeld CS, Randolph TW (2003) J Supercrit Fluids 27:317CrossRefGoogle Scholar
  20. 20.
    Ghaderi R, Artursson P, Carlfors J (1999) Pharm Res 16:676CrossRefGoogle Scholar
  21. 21.
    York P (1995) Pharm Res 12:S141Google Scholar
  22. 22.
    Palakodaty S, York P, Pritchard J (1998) Pharm Res 15:1835CrossRefGoogle Scholar
  23. 23.
    Chang SC, Lee MJ, Lin HM (2008) Chem Eng J 139:416CrossRefGoogle Scholar
  24. 24.
    Juppo AM, Boissier C, Khoo C (2003) Int J Pharm 250:385CrossRefGoogle Scholar
  25. 25.
    Ghaderi R, Artursson P, Carlfors J (2000) Eur J Pharm Sci 10:1CrossRefGoogle Scholar
  26. 26.
    Elvassore N, Bertucco A, Caliceti P (2001) J Pharm Sci 90(10):1628CrossRefGoogle Scholar
  27. 27.
    Tservistas M, Levy MS, Lo-Yim MYA, O’Kennedy RD, York P, Humphrey GO, Hoare M (2001) Biotechnol Bioeng 72(1):12CrossRefGoogle Scholar
  28. 28.
    Chen AZ, Kang YQ, Pu XM, Yin GF, Li Y, Hu JY (2009) J Colloid Interf Sci 330:317CrossRefGoogle Scholar
  29. 29.
    Wang Y, Dave RN, Pfeffer R (2004) J Supercrit Fluids 28:85CrossRefGoogle Scholar
  30. 30.
    He WZ, Suo QL, Jiang ZH, A S, Hong HL (2004) J Supercrit Fluids 31(1):101CrossRefGoogle Scholar
  31. 31.
    Suo QL, He WZ, Huang YC, Li CP, Hong HL, Li YX, Zhu MD (2005) Powder Technol 154:110CrossRefGoogle Scholar
  32. 32.
    He WZ, Suo QL, Li YX, Hong HL, Li GM, Zhao XH, Huang YC (2007) Cryst Res Technol 42(6):631CrossRefGoogle Scholar
  33. 33.
    He WZ, Suo QL, Hong HL, Li GM, Zhao XH, LI CP, A S (2006) Ind Eng Chem Res 45:2108CrossRefGoogle Scholar
  34. 34.
    He WZ, Suo QL, Hong HL, A S, Li CP, Huang YC, Li YX, Zhu MD (2007) J Mater Sci 42:3495. doi: https://doi.org/10.1007/s10853-006-1099-z CrossRefGoogle Scholar
  35. 35.
    Lengsfeld CS, Delplangue JP, Barocas VH, Randolph TW (2000) J Phys Chem 104:2725CrossRefGoogle Scholar
  36. 36.
    Bristow S, Shekunov T, Shekunov BY, York P (2001) J Supercrit Fluids 21:257CrossRefGoogle Scholar
  37. 37.
    Sun Y, Shekunov BY (2003) J Supercrit Fluids 27:73CrossRefGoogle Scholar
  38. 38.
    Randolph TW, Randolph AJ, Mebes M, Young S (1993) Biotechnol Progress 9:429CrossRefGoogle Scholar
  39. 39.
    Reverchon E (1999) J Supercrit Fluids 15:1CrossRefGoogle Scholar
  40. 40.
    Dixon DJ, Johnston KP, Bodmeier RA (1993) AIChE J 39:127CrossRefGoogle Scholar
  41. 41.
    Liau IS, Mc Hugh MA (1985) Supercritical fluid technology. Elsevier Science Publishers, AmsterdamGoogle Scholar
  42. 42.
    Wissinger RG, Paulaitis ME (1987) J Polym Sci B Polym Phys 25:2497CrossRefGoogle Scholar
  43. 43.
    Gulari E, Manke CW (2000) In: Proceedings of the 5th international symposium on supercritical fluids, Atlanta (USA), April 8–12Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wenzhi He
    • 1
    • 3
    Email author
  • Zhaohua Jiang
    • 2
  • Quanling Suo
    • 3
  • Guangming Li
    • 1
  1. 1.School of Environmental Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Department of Applied ChemistryHarbin Institute of TechnologyHarbinChina
  3. 3.College of Chemical EngineeringInner Mongolia University of TechnologyHohhotChina

Personalised recommendations