Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 448–459 | Cite as

Analysis of the essential work of fracture method as applied to UHMWPE

  • S. Naz
  • J. SweeneyEmail author
  • P. D. Coates
Article

Abstract

The validity of the basic assumptions behind the method of essential work of fracture (EWF), as applied to ultra-high molecular weight polyethylene (UHMWPE), is evaluated using finite element modelling. To define a suitable model of constitutive behaviour, the mechanical properties of UHMWPE have been measured in both uniaxial tension and compression over a range of strain rates. The observed strain rate dependence of stress, including the observed differences in strain rate sensitivity between tension and compression, is interpreted in terms of a single Eyring process. The constitutive theory is constructed comprising an Eyring process and hyperelastic networks, the latter having responses symmetric with respect to tension and compression. This theory is implemented within a finite element scheme, and used to model fracture measurements made on the same material using double-edge notch tensile specimens. Calculations of the non-essential work and of the extent of the plastic zones are thus made possible. It is concluded that the specific non-essential work is essentially constant, but that the shape factor β, assumed constant in the conventional analysis, varies significantly with ligament length. The implication of this finding on the derived EWF value is evaluated and found to be slight.

Keywords

Plastic Zone Crack Opening Displacement UHMWPE Crack Opening Displacement Strain Rate Dependence 

Notes

Acknowledgements

We wish to thank Dr. Neil Hubbard, Orthoplastics, Todmorden Road, Bacup, Lancs, UK for supply of material. We acknowledge funding from EPSRC for Dr. Naz under the Doctoral Training scheme.

References

  1. 1.
    Bergström JS, Kurtz SM, Rimnac CM, Edidin AA (2002) Biomaterials 23:2329CrossRefGoogle Scholar
  2. 2.
    Bergström JS, Rimnac CM, Kurtz SM (2003) Biomaterials 24:1365CrossRefGoogle Scholar
  3. 3.
    Bergström JS, Rimnac CM, Kurtz SM (2004) Biomaterials 25:2171CrossRefGoogle Scholar
  4. 4.
    Kurtz SM, Muratoglu OK, Evans M, Edidin AA (1999) Biomaterials 20:1659CrossRefGoogle Scholar
  5. 5.
    Ching ECY, Poon WKY, Li RKY, Mai Y-W (2000) Polym Eng Sci 40:2558CrossRefGoogle Scholar
  6. 6.
    Yamakawa RS, Razzino CA, Correa CA, Hage E Jr (2004) Polym Test 23:195CrossRefGoogle Scholar
  7. 7.
    Hashemi S (2003) Polym Test 22:589CrossRefGoogle Scholar
  8. 8.
    Poon WKY, Ching ECY, Cheng CY, Li RKY (2001) Polym Test 20:395CrossRefGoogle Scholar
  9. 9.
    Karger-Krocsis J, Moskala EJ (2000) Polymer 41:6301CrossRefGoogle Scholar
  10. 10.
    Mai YW, Cotterell B (1986) Int J Fracture 30:R37Google Scholar
  11. 11.
    Broberg KB (1968) Int J Fracture 4:11Google Scholar
  12. 12.
    Mai YW, Cotterell B, Horlyck, Vigna G (1987) Polym Eng Sci 27:804CrossRefGoogle Scholar
  13. 13.
    Hart EW (1967) Acta Metall 15:351CrossRefGoogle Scholar
  14. 14.
    Coates PD, Ward IM (1980) J Mater Sci 15:2897. doi: https://doi.org/10.1007/BF00550561 CrossRefGoogle Scholar
  15. 15.
    Sweeney J, Shirataki H, Unwin AP, Ward IM (1999) J Appl Polym Sci 74:3331CrossRefGoogle Scholar
  16. 16.
    Ward IM, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, ChichesterGoogle Scholar
  17. 17.
    Chow TS (1992) J Rheol 38:1707CrossRefGoogle Scholar
  18. 18.
    Haward RN, Thackray G (1968) Proc Roy Soc A 302:453Google Scholar
  19. 19.
    Nazarenko S, Bensason S, Hiltner A, Baer E (1994) Polymer 35:3883CrossRefGoogle Scholar
  20. 20.
    Bauwens-Crowet C, Bauwens J-C, Homès G (1972) J Mater Sci 7:176. doi: https://doi.org/10.1007/BF02403504 CrossRefGoogle Scholar
  21. 21.
    Joseph SH, Duckett RA (1978) Polymer 19:837CrossRefGoogle Scholar
  22. 22.
    Truss RW, Duckett RA, Ward IM (1981) J Mater Sci 16:1689. doi: https://doi.org/10.1007/BF02396889 CrossRefGoogle Scholar
  23. 23.
    Brooks NWJ, Duckett RA, Ward IM (1995) J Rheol 39:425CrossRefGoogle Scholar
  24. 24.
    Gueguen O, Richeton J, Ahzi S, Makradi A (2008) Acta Mater 56:1650CrossRefGoogle Scholar
  25. 25.
    Levita G, Parisi L, Mcloughlin S (1996) J Mater Sci 31:1545. doi: https://doi.org/10.1007/BF00357863 CrossRefGoogle Scholar
  26. 26.
    Rimnac CM, Wright TM, Klein RW (1988) Polym Eng Sci 28:1586CrossRefGoogle Scholar
  27. 27.
    Pruitt LA (2005) Biomaterials 26:905CrossRefGoogle Scholar
  28. 28.
    Haughie DW, Buckley CP, Wu J (2006) Biomaterials 27:3875CrossRefGoogle Scholar
  29. 29.
    Spencer PE, Sweeney J, Coates PD (2008) Mech Time-Dependent Mater 12:313CrossRefGoogle Scholar
  30. 30.
    Sweeney J, Spares R, Woodhead M (2009) Polym Eng Sci 49:1902CrossRefGoogle Scholar
  31. 31.
    Figiel L, Buckley CP (2009) J Non-Linear Mech 44:389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Engineering, Design and Technology/IRC in Polymer Science and TechnologyUniversity of BradfordBradfordUK
  2. 2.Ford Motor CompanyDagenham Diesel CentreDagenhamUK

Personalised recommendations