Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 429–434 | Cite as

Fabrication of poly(methyl methacrylate) microsphere added pressure-sensitive adhesives and their physical characteristics

  • Min Soo Yang
  • Seung Woo Ko
  • Hyoung Jin ChoiEmail author
Article

Abstract

Pressure-sensitive adhesives (PSAs), which prevent an optical film being shrank under high temperature and high humidity conditions thus protecting light-leakage phenomenon resulting from the stress induced, were synthesized in this study. Such phenomenon occurs in the edge of an LCD panel because the stress is concentrated on its edge and distorts the absorbance axis of a polarizer. To enhance performance of the PSAs, spherical PMMA microbeads were synthesized and added into the acrylic-based polymeric PSAs in this study and then light-leakage properties of each PSAs with spherical microbeads were evaluated by the light-leakage pictures of the samples. Dynamic storage modulus (G′) of the samples was also measured by a rotational rheometer and then correlated with light-leakage characteristics.

Keywords

PMMA Storage Modulus Polymeric Bead PMMA Bead Light Leakage 

Notes

Acknowledgements

This work was supported by Dong Woo Fine Chem. (2008), Korea.

References

  1. 1.
  2. 2.
    Lim CH, Ryu H, Cho UR (2009) Polym-Korea 33:319Google Scholar
  3. 3.
    Wang T, Canetta E, Weerakkody TG, Keddie JL (2009) ACS Appl Mater Interf 3:631CrossRefGoogle Scholar
  4. 4.
    Roberge S, Dube MA (2006) Polymer 47:799CrossRefGoogle Scholar
  5. 5.
    Asua JM (2002) Prog Polym Sci 27:1283CrossRefGoogle Scholar
  6. 6.
    Kajtna J, Golob J, Krajnc M (2009) Int J Adhes Adhes 29:186CrossRefGoogle Scholar
  7. 7.
    Chun HA, Kim HA, Kim GS (2007) J Appl Polym Sci 106:2746CrossRefGoogle Scholar
  8. 8.
    Bishopp JA, Davies L, Haslam JJ (1993) Int J Adhes Adhes 13:111CrossRefGoogle Scholar
  9. 9.
    Robert C, Crespy A, Bastide S, Lopez-Cuesta JM, Kerboeuf S, Artigue C, Grard E (2004) Int J Adhes Adhes 24:58CrossRefGoogle Scholar
  10. 10.
    Lee JY, Yoo SI (2004) IEICE Trans Inf Syst 2:1Google Scholar
  11. 11.
    Oakley JP, Satherley BL (1998) IEEE Trans Image Process 7:167CrossRefGoogle Scholar
  12. 12.
    Lee IS, Yoon SH, Jin HJ, Choi HJ (2006) Diam Relat Mater 15:1094CrossRefGoogle Scholar
  13. 13.
    Jun JB, Uhm SY, Ryu JH, Suh KD (2005) Colloid Surf 260:157CrossRefGoogle Scholar
  14. 14.
    Lee IS, Cho MS, Choi HJ (2005) Polymer 46:1317CrossRefGoogle Scholar
  15. 15.
    Nomura N (2004) J Ind Eng Chem 10:1182Google Scholar
  16. 16.
    Cho MS, Cho YH, Choi HJ, Jhon MS (2003) Langmuir 19:5875CrossRefGoogle Scholar
  17. 17.
    Lovell PM, El-Aasser MS (1997) Emulsion polymerization and emulsion polymer. Wiley, New YorkGoogle Scholar
  18. 18.
    Sugimoto T (2001) Monodispersed particles. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Gent AN (2005) Int J Non-Linear Mech 40:165CrossRefGoogle Scholar
  20. 20.
    Josse G, Sergot P, Dorget M, Creton C (2004) J Adhes 80:87CrossRefGoogle Scholar
  21. 21.
    Schach R, Tran Y, Menelle A, Creton C (2007) Macromolecules 40:6325CrossRefGoogle Scholar
  22. 22.
    Shull KR, Creton C (2004) J Polym Sci Part B Polym Phys 40:4023CrossRefGoogle Scholar
  23. 23.
    Tirumkudulu M, Russel WB, Huang TJ (2003) J Rheol 47:1399CrossRefGoogle Scholar
  24. 24.
    Wang YY, Wang SQ (2007) Phys Rev Lett 99:237801CrossRefGoogle Scholar
  25. 25.
    Zhang JB, Lodge TP, Macosko CW (2006) J Rheol 50:41CrossRefGoogle Scholar
  26. 26.
    Zosel A (1998) Int J Adhes Adhes 18:265CrossRefGoogle Scholar
  27. 27.
    Brown K, Hooker JC, Creton C (2002) Macromol Mater Eng 287:163CrossRefGoogle Scholar
  28. 28.
    Crosby AJ, Shull KR, Lakrout H, Creton C (2000) J Appl Phys 88:2956CrossRefGoogle Scholar
  29. 29.
    Ahn D, Shull KR (1998) Langmuir 14:3646CrossRefGoogle Scholar
  30. 30.
    Dollhofer J, Chiche A, Muralidharan V, Creton C, Hui CY (2004) Int J Solids Struct 41:6111CrossRefGoogle Scholar
  31. 31.
    Baron A, Rodriguez-Hernandez J, Papon E (2005) Macromol Chem Phys 206:2381CrossRefGoogle Scholar
  32. 32.
    Sakurai S, Okamoto Y, Sakaue H, Nakamura T, Banda L, Nomure S (2000) J Polym Sci Part B Polym Phys 38:1716CrossRefGoogle Scholar
  33. 33.
    Baron A, Cloutet E, Cramail H, Papon E (2003) Macromol Chem Phys 204:1616CrossRefGoogle Scholar
  34. 34.
    Mori H, Itoh Y, Murayama M, Ogawa M, Yabuki Y, Shinagawa Y (2000) SID Digest 551Google Scholar
  35. 35.
    Yang MS, Ko SW, Choi HJ (2009) J Macromol Sci A Pure Appl Chem 46:1142. doi: https://doi.org/10.1080/10601320903245359 CrossRefGoogle Scholar
  36. 36.
    Satake M, Takahashi Y (2000) Nitto Tech Rep 33:48Google Scholar
  37. 37.
    Yamaoka T, Oizumi S, Satake M, Fujimura Y (1995) Nitto Tech Rep 33:41Google Scholar
  38. 38.
    Hu AT, Tsai RS, Lee YD (1989) J Appl Polym Sci 37:1863CrossRefGoogle Scholar
  39. 39.
    Chen X, Zhong H, Jia L, Tang R, Qiao J, Zhang Z (2001) J Appl Polym Sci 81:2696CrossRefGoogle Scholar
  40. 40.
    Arencon D, Velasco JI, Realinho V, Sanchez-Soto M, Gordillo A (2007) J Mater Sci 42:19. doi: https://doi.org/10.1007/s10853-006-1036-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Min Soo Yang
    • 1
  • Seung Woo Ko
    • 1
  • Hyoung Jin Choi
    • 1
    Email author
  1. 1.Department of Polymer Science and EngineeringInha UniversityIncheonKorea

Personalised recommendations