Effects of hydrothermal aging on glass–fiber/polyetherimide (PEI) composites
- 319 Downloads
- 13 Citations
Abstract
The moisture absorption behavior and the influence of moisture on thermal and mechanical properties of glass–fiber/polyetherimide (PEI) laminates have been investigated. The laminates were exposed to hydrothermal aging at two different temperatures and high moisture rates. The properties of as-received and hydrothermally aged samples were compared. The hydrothermally aged laminates contained a large amount of moisture which caused decrease in the glass transition temperature and deterioration in mechanical properties (interlaminar shear strength, flexural modulus, bearing strength, etc.). Fractographic analysis revealed interfacial debonding as the dominant failure mechanism, indicating a strong influence of water degradation on fracture toughness results. Alterations in visco-elastic properties of glass/PEI composite which was exposed to hydrothermal aging were analyzed with the dynamic mechanical thermal analysis (DMTA) method. DMTA tests give evidence of plasticization of the PEI matrix.
Keywords
Thermal Cycle Dynamic Mechanical Thermal Analysis Fiber Protrusion Flexural Modulus Dynamic Mechanical Thermal AnalysisReferences
- 1.Kim HW, Grayson MA, Nairn JA (1995) Adv Compos Lett 4:185Google Scholar
- 2.Greenspan L (1977) J Res Natl Bureau Std A Phys Chem 81A:89CrossRefGoogle Scholar
- 3.Han MH, Nairn JA (2003) Composites Part A 34:979CrossRefGoogle Scholar
- 4.Adamson MJ (1980) J Mater Sci 15:1736. doi: https://doi.org/10.1007/BF00550593 CrossRefGoogle Scholar
- 5.Bao LR, Yee AF (2002) Polymer 43:3987CrossRefGoogle Scholar
- 6.Bond DA (2005) J Compos Mater 39:2113CrossRefGoogle Scholar
- 7.Karbhari M, Xian G (2009) Composites Part B 40:41CrossRefGoogle Scholar
- 8.Valentin D, Paray F, Guetta B (1987) J Mater Sci 22:46. doi: https://doi.org/10.1007/BF01160550 CrossRefGoogle Scholar
- 9.Czigany T, Mohd Ishak ZA, Heitz T, Karger Kocsis J (1996) Polym Compos 17:900CrossRefGoogle Scholar
- 10.Mohd Ishak ZA, Lim NC (1994) Polym Eng Sci 34:1645CrossRefGoogle Scholar
- 11.Akay M (1994) Polym Compos 2:349Google Scholar
- 12.Bastioli C, Guanella I, Romano G (1990) Polym Compos 11:1CrossRefGoogle Scholar
- 13.Bergeret A, Pires I, Foulc MP, Abadie B, Ferry L, Crespy A (2001) Polym Test 20:753CrossRefGoogle Scholar
- 14.Bastioli C, Casciola M, Romano G (1990) In: Proceedings of the third ınternational conference on composite ınterfaces, Cleveland, p 569Google Scholar
- 15.Varelidis PC, Papakostopoulos DG, Pandazis CI, Papaspyrides CD (2000) Composites Part A 31:549CrossRefGoogle Scholar
- 16.Pavlidou S, Papaspyrides CD (2003) Composites Part A 34:1117CrossRefGoogle Scholar
- 17.Mohd Ishak ZA, Ariffin A, Senawi R (2001) Eur Polym J 37:1635CrossRefGoogle Scholar
- 18.DiBenedetto AT (2001) Mater Sci Eng A 302:74CrossRefGoogle Scholar
- 19.Ishida H, Koenig JL (1978) Polym Eng Sci 18:128CrossRefGoogle Scholar
- 20.Srivastava VK (1999) Mater Sci Eng A 263:56CrossRefGoogle Scholar
- 21.Valea A, Martinez I, Gonzalez ML, Ecelza A, Mondragon I (1998) J Appl Polym Sci 70:2595CrossRefGoogle Scholar
- 22.Kuzak SG, Shanmugam A (1999) J Appl Polym Sci 73:649CrossRefGoogle Scholar
- 23.Alperstein D, Narkis M, Siegmann A, Binder B (1995) Polym Eng Sci 35:754CrossRefGoogle Scholar
- 24.Ghorbel I, Valentin O (1993) Polym Compos 14:324CrossRefGoogle Scholar
- 25.Arici AA (2007) J Reinf Plast Comp 26:1937CrossRefGoogle Scholar
- 26.Yilmaz T, Sinmazcelik T (2007) Mater Des 28:520CrossRefGoogle Scholar
- 27.Jang BZ (1999) Advanced polymer composites: principles and application. ASM International, Materials Park, OH, p 138Google Scholar
- 28.Costa ML, Muller de Almeda SC, Rezende MC (2005) Mater Res 8:335CrossRefGoogle Scholar
- 29.Zhou J, Lucas JP (1999) Polymer 40:5513CrossRefGoogle Scholar