Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 363–368 | Cite as

Elastic properties in different nano-structured AlN films

  • R. J. Jiménez RiobóoEmail author
  • V. Brien
  • P. Pigeat
Article

Abstract

A study of the transverse acoustic phonons on nano-structured AlN films has been carried out by using high-resolution micro-Brillouin spectroscopy. Dense films have been deposited by radio frequency (r.f.) magnetron sputtering under ultra high vacuum at room temperature. Films with different morphologies were prepared and investigated by transmission electron microscopy and Brillouin Spectroscopy (equiaxed nano-sized, nano-columnar grains and amorphous phase). Results show a dependence of the transverse modes on the nano-structure. The nano-columnar film exhibits two transversal modes as expected for the AlN würtzite while the equiaxed nano-sized and the amorphous films only exhibit one isotropic transverse mode as expected in amorphous materials. One important result is that the sound propagation velocity in the AlN amorphous phase is higher than the one in the non-textured nano-crystalline phase. This phenomenon has, however, already been observed in ferroelectric ceramics.

Keywords

Film Plane Ferroelectric Ceramic Aluminium Nitride Brillouin Frequency Shift Acoustic Longitudinal Mode 

References

  1. 1.
    Morkoc H, Strike S, Bao GB, Lin MF, Sverdlov B, Burns M (1994) J Appl Phys 76:1363CrossRefGoogle Scholar
  2. 2.
    Kenyon AJ (2002) Prog Quantum Electron 26:225CrossRefGoogle Scholar
  3. 3.
    Zanatta AR, Ribeiro CTM, Jahn U (2005) J Appl Phys 98:93514CrossRefGoogle Scholar
  4. 4.
    Dimitrova VI, Van Patten PG, Richardson H, Kordesch ME (2001) Appl Surf Sci 175–176:480CrossRefGoogle Scholar
  5. 5.
    Favennec PN, L’Haridon H, Salvi M, Moutonnet D, Le Guillou Y (1989) Electron Lett 25:718CrossRefGoogle Scholar
  6. 6.
    Priolo F, Franzo G, Coffa S, Carnera A (1998) Phys Rev B 57:4443CrossRefGoogle Scholar
  7. 7.
    Zanatta AR (2003) Appl Phys Lett 82(9):1395CrossRefGoogle Scholar
  8. 8.
    Rinnert H, Adeola GW, Ardyanian M, Miska P, Vergnat M (2008) Mater Sci Eng B 46(1–3):146CrossRefGoogle Scholar
  9. 9.
    Kenyon AJ (2002) Prog Quantum Electron 26:225CrossRefGoogle Scholar
  10. 10.
    Rozo C, Jaque D, Fonseca LF, Solé JG (2008) J Lumin 128(7):1197CrossRefGoogle Scholar
  11. 11.
    Tjong SC, Chen H (2004) Mater Sci Eng R 45(1–2):1CrossRefGoogle Scholar
  12. 12.
    Sun Chang Q (2007) Prog Solid State Chem 35(1–159):73Google Scholar
  13. 13.
    Shih WY, Shih W-H, Aksay IA (1994) Phys Rev B 50:15575CrossRefGoogle Scholar
  14. 14.
    Wang YG, Zhong WL, Zhang PL (1994) Solid State Commun 90:329CrossRefGoogle Scholar
  15. 15.
    Li X, Shih W-H (1997) J Am Ceram Soc 80:2844CrossRefGoogle Scholar
  16. 16.
    Akdogan EK, Safari A (2000) IEEE Trans Ultrason Freq Control 47:881CrossRefGoogle Scholar
  17. 17.
    Miclea C, Tanasoiu C, Gheorghiu A, Miclea CF, Tanasoiu V (2004) Mechanochem Mech Alloy 39:5431Google Scholar
  18. 18.
    Brien V, Pigeat P (2007) J Cryst Growth 299:189CrossRefGoogle Scholar
  19. 19.
    Brien V, Pigeat P (2008) J Cryst Growth 310(16):3890CrossRefGoogle Scholar
  20. 20.
    Easwarakhantan T, Assouar MB, Pigeat P, Alnot P (2005) J Appl Phys 98:073531CrossRefGoogle Scholar
  21. 21.
    Pigeat P, Easwarakhanthan T (2008) Thin Solid Films 516(12):3957CrossRefGoogle Scholar
  22. 22.
    Jiménez Riobóo RJ, García-Hernández M, Prieto C, Fuentes-Gallego JJ, Blanco E, Ramírez del Solar M (1997) J Appl Phys 81:7739CrossRefGoogle Scholar
  23. 23.
    Jiménez Riobóo RJ, Calzada ML, Krüger JK, Alnot P (1999) J Appl Phys 85:7349CrossRefGoogle Scholar
  24. 24.
    Sandercock JR (1982) Light scattering in solids III. Springer, BerlinGoogle Scholar
  25. 25.
    Krüger JK, Ems J, Brierley J, Jiménez Riobóo RJ (1998) J Phys D: Appl Phys 31:1913CrossRefGoogle Scholar
  26. 26.
    Choi JH, Lee JY, Kim JH (2001) Thin Solid Films 384:166CrossRefGoogle Scholar
  27. 27.
    Williams DB, Carter CB (1996) Transmission electron microscopy, a textbook for materials science. Plenum Press, New York, p 387CrossRefGoogle Scholar
  28. 28.
    Jiménez Riobóo RJ, Rodríguez-Cañas E, Vila M, Prieto C, Calle F, Palacios T, Sánchez MA, Omnès F, Ambacher O, Assouar B, Elmazria O (2002) J Appl Phys 92:6868CrossRefGoogle Scholar
  29. 29.
    Rubio-Zuazo J, Jiménez-Rioboó RJ, Rodríguez-Cañas E, Prieto C, Palacios T, Calle F, Monroy E, Sánchez-García MA (2002) Mater Sci Eng B 93:168CrossRefGoogle Scholar
  30. 30.
    Auld BA (1990) Acoustic fields and waves in solids, vol 1, 2nd edn. Krieger Publishing, Malabar, FLGoogle Scholar
  31. 31.
    Krüger JK, Ziebert C, Schmitt H, Jimenez B, Bruch C (1997) Phys Rev Lett 78:2240CrossRefGoogle Scholar
  32. 32.
    Bretos I, Ricote J, Jiménez R, Mendiola J, Jiménez Riobóo RJ, Calzada ML (2005) J Eur Ceram Soc 25:2325CrossRefGoogle Scholar
  33. 33.
    Bretos I, Ricote J, Jiménez Riobóo RJ, Pardo L, Calzada ML (2007) Appl Phys A 89:967CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Instituto de Ciencia de Materiales de Madrid (CSIC)MadridSpain
  2. 2.Institut Jean Lamour (UMR CNRS 7198), CNRS - Nancy-Université - UPV-Metz, Département CP2SVandœuvre-lès-NancyFrance

Personalised recommendations