Journal of Materials Science

, Volume 45, Issue 1, pp 268–270 | Cite as

Influence of fiber aspect ratio and orientation on the dielectric properties of polymer-based nanocomposites

  • Ricardo SimoesEmail author
  • Jaime Silva
  • Senentxu Lanceros-Mendez
  • Richard Vaia

The addition of carbon nanotubes (CNT) to a polymeric matrix affects its mechanical and electrical properties. The changes can be significant even at small volume fractions of the reinforcement. The electrical properties are particularly sensitive to the CNT concentration. It is believed that the origin of this effect is the formation of a network of highly conductive CNTs forming preferential pathways for the electrical current to flow through. The CNT concentration, aspect ratio (AR), and dispersion are expected to affect the material response [1, 2, 3, 4]. Because of the complexity of the problem and the lack of fundamental understanding on the underlying phenomena, computer simulations can provide useful insights.

The focus in the past years has been on statistical models to determine the percolation threshold. The percolation threshold or the concentration where an infinite cluster appears [ 5] can be predicted for high aspect ratio fillers in the framework of the excluded volume...


Dielectric Constant Aspect Ratio Percolation Threshold Lower Dielectric Constant Vinylidene Fluoride 



Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA8655-06-1-3009. The U.S Government is authorized to reproduce and distribute reprints for Governmental purpose notwithstanding any copyright notation thereon. We acknowledge also the Foundation for Science and Technology, Lisbon, through the 3° Quadro Comunitario de Apoio, the POCTI and FEDER programs, and the PTDC/CTM/69316/2006 grant.


  1. 1.
    Thostenson ET, Li C, Chou T-W (2005) Compos Sci Technol 65:491CrossRefGoogle Scholar
  2. 2.
    Brostow W, Deborde JL, Jaclewicz M, Olzynski P (2003) J Mater Educ 25:119Google Scholar
  3. 3.
    Kopczynska A, Ehrenstein WG (2007) J Mater Educ 29:325Google Scholar
  4. 4.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194CrossRefGoogle Scholar
  5. 5.
    Stauffer D, Aharony A (1992) A introduction to percolation theory. Taylor and Francis, LondonGoogle Scholar
  6. 6.
    Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Marêché JF (1996) Phys Rev B 53:6209CrossRefGoogle Scholar
  7. 7.
    Munson-McGee SH (1991) Phys Rev B 43:3331CrossRefGoogle Scholar
  8. 8.
    Berhan L, Sastry AM (2007) Phys Rev E 75:041120CrossRefGoogle Scholar
  9. 9.
    Berhan L, Sastry AM (2007) Phys Rev E 75:041121CrossRefGoogle Scholar
  10. 10.
    Yao S-H, Dang Z-M, Jiang M-J, Xu H-P, Bai J (2007) Appl Phys Lett 91:212901CrossRefGoogle Scholar
  11. 11.
    Bergman DJ, Imry Y (1977) Phys Rev Lett 39:1222CrossRefGoogle Scholar
  12. 12.
    Stroud D, Bergman DJ (1982) Phys Rev B 25:2061CrossRefGoogle Scholar
  13. 13.
    Al-Saleha MH, Sundarara U (2009) Carbon 47:2CrossRefGoogle Scholar
  14. 14.
    White SI, DiDonna BA, Mu M, Lubensky TC, Winey KI (2009) Phys Rev B 79:024301CrossRefGoogle Scholar
  15. 15.
    Du F, Fischer JE, Winey KI (2005) Phys Rev B 72:121404CrossRefGoogle Scholar
  16. 16.
    Simoes R, Silva J, Vaia R, Sencadas V, Costa P, Gomes J, Lanceros-Mendez S (2009) Nanotechnology 20:035703CrossRefGoogle Scholar
  17. 17.
    Simões R, Cunha AM, Brostow W (2006) Comp Mater Sci 36:319CrossRefGoogle Scholar
  18. 18.
    Simoes R, Cunha AM, Brostow W (2006) Model Simul Mater Sci Eng 14:157CrossRefGoogle Scholar
  19. 19.
    Vold MJ (1959) J Phys Chem-US 63:1608CrossRefGoogle Scholar
  20. 20.
    Balberg I (1987) Phys Rev Lett 59:1305CrossRefGoogle Scholar
  21. 21.
    Ning H, Masuda Z, Cheng Y, Yamamoto G (2008) Nanotechnology 19:215701CrossRefGoogle Scholar
  22. 22.
    Mdarhri A, Carmona F, Brosseau C, Delhaes P (2008) J Appl Phys 103:054303CrossRefGoogle Scholar
  23. 23.
    Ahmad K, Pan W, Shi S-L (2006) Appl Phys Lett 89:133122CrossRefGoogle Scholar
  24. 24.
    Zhu B-K, Xie S-H, Xu Z-K, Xu Y-Y (2006) Compos Sci Technol 66:548CrossRefGoogle Scholar
  25. 25.
    Dang Z-M, Wang L, Yin Y, Zhang Q, Lei Q-Q (2007) Adv Mater 19:852CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ricardo Simoes
    • 1
    • 2
    Email author
  • Jaime Silva
    • 1
    • 3
  • Senentxu Lanceros-Mendez
    • 3
  • Richard Vaia
    • 4
  1. 1.IPC-Institute for Polymers and CompositesUniversity of MinhoGuimarãesPortugal
  2. 2.Polytechnic Institute of Cávado and AveBarcelosPortugal
  3. 3.Department of PhysicsUniversity of MinhoBragaPortugal
  4. 4.Air Force Research LaboratoriesDaytonUSA

Personalised recommendations