Advertisement

Journal of Materials Science

, Volume 45, Issue 1, pp 233–241 | Cite as

Pyrolysis of aluminium loaded polymethylsiloxanes: the influence of Al/PMS ratio on mullite formation

  • Juliana AnggonoEmail author
  • Brian Derby
Article

Abstract

Al-filler-loaded polymethylsiloxane (PMS) was pyrolysed in air atmosphere at temperatures 400–1700 °C. The effect of the Al amount added to the PMS on phase development, densification behaviour and microstructure evolution was studied by simultaneous thermal analysis, X-ray diffraction, scanning electron microscopy and electron probe microanalysis. The Al/PMS reaction route is complex producing Si, SiO2 (amorphous and cristobalite), Al2O3 (γ-, ι- and α-Al2O3), Al2OC, Al4O4C, Al4SiC4, and AlN, depending on the ratio of Al/PMS in the initial mixture. Increasing the Al content (high Al/PMS ratio) reduces the amount of voids and porosities after PMS degradation. The voids and porosities provide access for the oxygen atmosphere into the inner structure to oxidise the Al particles, Si or SiC and also as channels for the PMS degradation products to escape. Mullite formation was identified in sample containing >73 wt% Al at temperature as low as 1400 °C.

Keywords

Simultaneous Thermal Analysis Silicone Resin Preceramic Polymer Siloxane Polymer Continuous Al2O3 

References

  1. 1.
    Wei Q, Pippel E, Woltersdorf J, Scheffler M, Greil P (2002) Mater Chem Phys 73:281CrossRefGoogle Scholar
  2. 2.
    Scheffler M, Wei Q, Pippel E, Woltersdorf J, Greil P (2002) Key Eng Mater 206–213:289Google Scholar
  3. 3.
    Suttor D, Kleebe HJ, Ziegler G (1997) J Am Ceram Soc 80:2541CrossRefGoogle Scholar
  4. 4.
    Anggono J, Derby B (2005) J Am Ceram Soc 88:2085CrossRefGoogle Scholar
  5. 5.
    Anggono J, Derby B (2006) J Europ Ceram Soc 26:1107CrossRefGoogle Scholar
  6. 6.
    Michalet T, Parlier M, Beclin F, Duclos R, Crampon J (2002) J Eur Ceram Soc 22:143CrossRefGoogle Scholar
  7. 7.
    Cameron WE (1977) Am Mineral 62:747Google Scholar
  8. 8.
    Burnham CW (1963) Z Kristal 115:127CrossRefGoogle Scholar
  9. 9.
    Fischer RX, Schneider H, Voll D (1996) J Europ Ceram Soc 16:109CrossRefGoogle Scholar
  10. 10.
    Scheffler M, Greil P In: Mueller G (ed) EUROMAT 99, Wiley-VCH Verlag GmbH, Weinheim, G, pp 307–311Google Scholar
  11. 11.
    Greil P, Seibold M, Erny T (1992) In: Schmidt H, Hirano K (eds) Microcrystalline ceramic composites by active filler controlled reaction pyrolysis of polymers in materials research symposium, vol 274. MRS, Pittsburgh, pp 155–66Google Scholar
  12. 12.
    Renlund GM, Prochazka S, Doremus RH (1991) J Mater Res 6:2716CrossRefGoogle Scholar
  13. 13.
    Schmidt H, Buhler P, Greil P (1995) In: Galassi C (ed) Pyrolytic conversion of poly(methylsiloxane) to silicon (oxy) carbide ceramics in fourth euro ceramics, vol 1. Gruppo Editoriale Faenza Editrice S.p.A., pp 299–306Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of MaterialsUniversity of ManchesterManchesterUK
  2. 2.Department of Mechanical EngineeringPetra Christian UniversitySurabayaIndonesia

Personalised recommendations