Advertisement

Journal of Materials Science

, Volume 45, Issue 1, pp 139–145 | Cite as

High-temperature pyrolysis of ceramic fibers derived from polycarbosilane–polymethylhydrosiloxane polymer blends with porous structures

  • Ken’ichiro KitaEmail author
  • Masaki Narisawa
  • Atsushi Nakahira
  • Hiroshi Mabuchi
  • Masayoshi Itoh
  • Masaki Sugimoto
  • Masahito Yoshikawa
Article

Abstract

The polymer blends of PCS (polycarbosilane) and PMHS-h (polymethylohydrosiloxane with high molecular weight) were prepared by freeze-drying process of mixed benzene solution. Melt viscosity, mass loss, and gas evolution from prepared polymer blends were analyzed. A polymer blend of HSah15 (15 mass% PMHS-h to PCS) was melt-spun to fiber form, curing by thermal oxidation and pyrolyzed at various temperatures up to 1773 K. The obtained fibers were investigated by tensile tests, FE-SEM (field emission scanning electron microscope) observation, and XRD (X-ray diffraction) analysis. After pyrolysis at 1273 K, there were no pores in the cross section of the fiber derived from pure PCS; however, there were amounts of pores in the cross sections of the fiber derived from HSah15. After pyrolysis at 1773 K, the coarse β-SiC (silicon carbide) crystals were formed on the outside surface of the fiber derived from pure PCS; however, no remarkable β-SiC crystal were formed on the outside surface of the fiber derived from HSah15.

Keywords

Pyrolysis Fiber Surface Thermal Oxidation Polymer Blend Average Tensile Strength 

Notes

Acknowledgement

This work is partly supported by a Grant-in Aid for Scientific Research C from Japan Society of Promotion Science.

References

  1. 1.
    Kita K, Narisawa M, Mabuchu H, Itoh M, Sugimoto M, Yoshikawa M (2009) J Am Ceram Soc 92:1192CrossRefGoogle Scholar
  2. 2.
    Masuda M, Mabuchi H, Tsuda H, Matsui T, Morii K (2002) Mater Sci Forum 389–393:763CrossRefGoogle Scholar
  3. 3.
    Kita K, Narisawa M, Mabuchu H, Itoh M, Sugimoto M, Yoshikawa M (2009) Adv Mater Res 66:5CrossRefGoogle Scholar
  4. 4.
    Shibata K, Oi T, Otsuka A, Sumimoto H, Oshihara K, Teraoka Y, Ueda W (2003) J Ceram Soc Jpn 111:852CrossRefGoogle Scholar
  5. 5.
    Taki T, Okamura K, Sato T (1989) J Mater Sci 24:1263. doi: https://doi.org/10.1007/BF02397056 CrossRefGoogle Scholar
  6. 6.
    Bouillon E, Langlais F, Pailler R, Naslain R, Cruege F, Huong PV, Sarthou JC, Delpuech A, Laffon C, Lagarge P, Monthioux M, Oberlin A (1991) J Mater Sci 26:1333. doi: https://doi.org/10.1007/BF00544474 CrossRefGoogle Scholar
  7. 7.
    Hasegawa Y, Iimura M, Yajima S (1980) J Mater Sci 15:720. doi: https://doi.org/10.1007/BF00551739 CrossRefGoogle Scholar
  8. 8.
    Carberry E, West R (1966) J Organomet Chem 6:582CrossRefGoogle Scholar
  9. 9.
    Bouillon E, Mocare D, Villenuve F, Pailler R, Naslain R, Monthioux M, Oberlin A, Guimon C, Pfister G (1991) J Mater Sci 26:1517. doi: https://doi.org/10.1007/BF00544661 CrossRefGoogle Scholar
  10. 10.
    Simon G, Bunsell RA (1984) J Mater Sci 19:3649. doi: https://doi.org/10.1007/BF02396937 CrossRefGoogle Scholar
  11. 11.
    Bodet R, Jia N, Tressler RE (1995) J Eur Ceram Soc 15:997CrossRefGoogle Scholar
  12. 12.
    Hasegawa Y, Okamura K (1983) J Mater Sci 18:3633. doi: https://doi.org/10.1007/BF00540736 CrossRefGoogle Scholar
  13. 13.
    Shimoo T, Toyoda F, Okamura K (2000) J Am Ceram Soc 83:1450CrossRefGoogle Scholar
  14. 14.
    Hao YJ, Jin GQ, Han XD, Guo XY (2006) Mater Lett 60:1334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ken’ichiro Kita
    • 1
    Email author
  • Masaki Narisawa
    • 1
  • Atsushi Nakahira
    • 1
  • Hiroshi Mabuchi
    • 1
  • Masayoshi Itoh
    • 2
  • Masaki Sugimoto
    • 3
  • Masahito Yoshikawa
    • 3
  1. 1.Graduate School of EngineeringOsaka Prefecture UniversitySakai, OsakaJapan
  2. 2.Fukushima National College of TechnologyIwaki, FukushimaJapan
  3. 3.Quantum Beam Science DirectorateJapan Atomic Energy AgencyTakasaki, GunmaJapan

Personalised recommendations