Advertisement

Journal of Materials Science

, Volume 45, Issue 1, pp 136–138 | Cite as

Quantum computation of photoelastic properties of ionic crystals

  • B. K. Sharma
  • G. MisraEmail author
  • S. C. Goyal
Article
  • 82 Downloads

Abstract

A general scheme for computation of photoelastic properties has been proposed using the well-established quantum ion dependent theory. The families under consideration are I–VII type ionic crystals and AB2 type cross compounds. The calculated values of strain polarisability constant (λ) for the crystals in these families are compared with the predicted values by some other workers as well as with the available experimental ones. The results of the present work are in much better agreement with the available experimental data than the earlier estimated ones. This formulation is proposed to extend for other families of similar nature and theoretical analysis of the properties of nano materials. The industrial applications are also suggested.

Keywords

Dielectric Constant Ionic Crystal Alkali Halide Dependent Formulation Zinc Blend 

Notes

Acknowledgements

Authors are thankful to Dr. M. K. Rawat, Principal, Agra College, Agra for providing the necessary facilities. We would like to thank Dr. K. P. Tiwari, Department of Physics, Agra College, Agra for useful comments and suggestions. One of the authors S.C.G. is thankful to the University Grants Commission, New Delhi (UGC) for providing the financial assistance.

References

  1. 1.
    Singh P, Sarkar KK (1985) Solid State Commun 55:439CrossRefGoogle Scholar
  2. 2.
    Pitha CA (1972) In: Proceedings of the conference on high power IR laser window materials, BedfordGoogle Scholar
  3. 3.
    Bindow B, Gianino PD, Tsay YF, Mitra SS (1974) Appl Optics 13:2382CrossRefGoogle Scholar
  4. 4.
    Van Vechten JA (1969) Phys Rev 187:1007CrossRefGoogle Scholar
  5. 5.
    Phillips JC (1970) Rev Mod Phys 42:317CrossRefGoogle Scholar
  6. 6.
    Coker H (1979) J Phys Chem Solids 40:1079CrossRefGoogle Scholar
  7. 7.
    Wilson JN, Curtis RM (1970) J Phys Chem 74:187CrossRefGoogle Scholar
  8. 8.
    Dutta N, Agarwal GG, Shanker J (1985) Solid State Commun 55:993CrossRefGoogle Scholar
  9. 9.
    Pantelides S (1975) Phys Rev Lett 35:250CrossRefGoogle Scholar
  10. 10.
    Sarkar KK, Goyal SC (1980) Phys Rev 21:879CrossRefGoogle Scholar
  11. 11.
    Ravindra NM, Ganpati P, Choi J (2007) Inf Phys Tech 50:21CrossRefGoogle Scholar
  12. 12.
    Maksmob O, Samarth N (2004) Phys Stat Sol B 3:241Google Scholar
  13. 13.
    Kulshrestha A, Singh P, Sarkar KK (1982) Phys Rev B 25:7852CrossRefGoogle Scholar
  14. 14.
    Goyal SC, Sarkar KK (1976) Solid Stat Commun 18:1595CrossRefGoogle Scholar
  15. 15.
    Sarkar KK, Fernandez AO (1991) Proc Natl Acad Sci India 61 (A) III:433Google Scholar
  16. 16.
    Tiwari KP, Sarkar KK, Tiwari HV (2002) Indian J Pure Appl Phys 35:675Google Scholar
  17. 17.
    Tiwari KP (1998) Ph.D. Thesis, Dr. BR Ambedkar University, AgraGoogle Scholar
  18. 18.
    Yamashita J, Kurosawa J (1955) J Phys Soc Jpn 10:610CrossRefGoogle Scholar
  19. 19.
    Shanker J, Sharma P, Sharma JC (1977) Solid State Commun 22:355CrossRefGoogle Scholar
  20. 20.
    Tiwari KP, Sarkar KK (1995) Proc Ind Acad Sci A 65:20Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsAgra College, Dr. B.R. Ambedkar UniversityAgraIndia
  2. 2.Faculty of Engineering and Technology, Department of Applied SciencesR.B.S. College (U.P. Technical University, Lucknow)AgraIndia

Personalised recommendations