Journal of Materials Science

, Volume 45, Issue 1, pp 118–123 | Cite as

Synthesis and photoluminescence properties of LiEu(W,Mo)2O8:Bi3+ red-emitting phosphor for white-LEDs

  • Xiang-Hong HeEmail author
  • Ming-Yun Guan
  • Jian-Hua Sun
  • Ning Lian
  • Tong-Ming Shang


LiEu1−x(W2−yMoy)O8:xBi3+ series red-emitting phosphors were synthesized by solid state reaction. The structure, morphology, and photoluminescent properties of phosphors were studied by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectrum, respectively. X-ray powder diffraction analysis showed that the as-obtained phosphors belong to the scheelite structure. The average particle size of the investigated phosphor was about 8 μm. The excitation spectrum exhibits a charge-transfer broad band along with some sharp peaks from the typical 4f–4f transitions of Eu3+. Under excitation of UV, near-UV, or blue light, these phosphors showed strong red emission at 615 nm due to 5D07F2 transition of Eu3+. The incorporation of Mo6+ into LiEuW2O8:Bi3+ could induce red-shift of the charge-transfer broad band and a remarkable increase of photoluminescence. The highest red-emission intensity was observed with LiEu0.80Mo2O8:0.20Bi3+. Compared with the commercial red-emitting phosphor, Y2O2S:Eu3+, the emission intensity of LiEu0.80Mo2O8:0.20Bi3+ phosphor is much stronger than that of Y2O2S:Eu3+ and its chromaticity coordinates are closer to the standard values than that of the commercial phosphor. The optical properties of LiEu0.80Mo2O8:0.20Bi3+ phosphor make it attractive for the application in white-light-emitting diodes (LEDs), in particular for near-UV InGaN-based white-LEDs.


Scheelite Structure Main Emission Peak Double Tungstate LMCT Band Representative Scanning Electron Microscopy Micrograph 



The authors thank Dr. Jinping Huang of Shanghai Normal University for assistance with the XRD measurements. Financial support from the Natural Science Research Project of the Jiangsu Higher Education Institutions (08KJD150014), the QingLan Project of the Jiangsu Province (2008), and the Basic Research Fund of Jiangsu Teachers University of Technology is gratefully acknowledged.


  1. 1.
    Nakamura S, Fasol G (1996) The blue laser: GaN based light emitters and lasers. Springer, Berlin, p 216Google Scholar
  2. 2.
    Jüstel T, Nikel H, Ronda C (1998) Angew Chem Int Ed 37:3084CrossRefGoogle Scholar
  3. 3.
    Schubert EF, Kim JK (2005) Science 308:1274CrossRefGoogle Scholar
  4. 4.
    Shionoya S, Yen WM (1999) Phosphor handbook. CRC Press, New YorkGoogle Scholar
  5. 5.
    Hu Y, Zhuang W, Ye H et al (2005) J Lumin 111:139CrossRefGoogle Scholar
  6. 6.
    He XH, Zhu Y (2008) J Mater Sci 43(5):1515. doi: CrossRefGoogle Scholar
  7. 7.
    Shi G (2007) Semiconductor light-emitting diodes and solid state lighting. Science Press, Beijing In ChineseGoogle Scholar
  8. 8.
    Uheda K, Hirosaki N, Yamamoto Y, Naito A, Nakajima T, Yamamoto H (2006) Electrochem Solid State Lett 9(4):H22CrossRefGoogle Scholar
  9. 9.
    Toquin RL, Cheetham A (2006) Chem Phys Lett 423:352CrossRefGoogle Scholar
  10. 10.
    Neeraj S, Kijima N, Cheetham AK (2004) Chem Phys Lett 387:2CrossRefGoogle Scholar
  11. 11.
    Wu H, Zhang X, Guo C, Xu J, Wu M, Su Q (2005) IEEE Photonics Technol Lett 17:1160CrossRefGoogle Scholar
  12. 12.
    Xie RJ, Hirosaki N, Kiumra N, Sakuma K, Mitomo M (2007) Appl Phys Lett 90:191101CrossRefGoogle Scholar
  13. 13.
    Piao X, Horikawa T, Hanzawa H, Machida K (2006) Appl Phys Lett 88:161908CrossRefGoogle Scholar
  14. 14.
    Duan CJ, Delsing ACA, Hintzen HT (2009) Chem Mater 21(6):1010CrossRefGoogle Scholar
  15. 15.
    Saradhi MP, Pralong V, Varadaraju UV, Raveau B (2009) Chem Mater 21(9):1793CrossRefGoogle Scholar
  16. 16.
    Gundiah G, Shimomura Y, Kijima N, Cheetham AK (2008) Chem Phy Lett 455:279CrossRefGoogle Scholar
  17. 17.
    Uhlich D, Plewa J, Jüstel T (2008) J Lumin 128:1649CrossRefGoogle Scholar
  18. 18.
    Won Y, Jang HS, Im WB, Jeon DY (2008) J Electrochem Soc 155(9):J226CrossRefGoogle Scholar
  19. 19.
    Guo C, Li B, Jin F (1991) Chin J Lumin 12(2):118Google Scholar
  20. 20.
    Macalik L, Hanuza J, Sokolnicki J, Legendziewicz J (1999) Spectrochimica Acta A 55:251CrossRefGoogle Scholar
  21. 21.
    Kato A, Oishi S, Shishido T, Yamazaki M, Iida S (2005) J Phys Chem Solids 66:2079CrossRefGoogle Scholar
  22. 22.
    Cascales C, Mendez BA, Rico M, Volkov V, Zaldo C (2005) Opt Mater 27:1672CrossRefGoogle Scholar
  23. 23.
    Chiu CH, Wang MF, Lee CS, Chen TM (2007) J Solid State Chem 180:619CrossRefGoogle Scholar
  24. 24.
    Van Vliet JPM, Blasse G, Brixner LH (1988) J Solid State Chem 76(1):160CrossRefGoogle Scholar
  25. 25.
    Wang J, Jing X, Yan C et al (2006) J Lumin 121:57CrossRefGoogle Scholar
  26. 26.
    Sivakumar V, Varadaraju UV (2007) J Electrochem Soc 154(1):J28CrossRefGoogle Scholar
  27. 27.
    Jorgensen CK (1962) Absorption spectra and chemical bonding in complexes. Pergamon Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiang-Hong He
    • 1
    • 2
    Email author
  • Ming-Yun Guan
    • 1
    • 2
  • Jian-Hua Sun
    • 1
    • 2
  • Ning Lian
    • 1
    • 2
  • Tong-Ming Shang
    • 1
    • 2
  1. 1.School of Chemistry and Chemical EngineeringJiangsu Teachers University of TechnologyChangzhouPeople’s Republic of China
  2. 2.Jiangsu Province Key Laboratory of Precious Metal Chemistry and TechnologyJiangsu Teachers University of TechnologyChangzhouPeople’s Republic of China

Personalised recommendations