Advertisement

Journal of Materials Science

, Volume 44, Issue 23, pp 6437–6446 | Cite as

Organic–inorganic hybrids obtained by in situ polymerization of aniline in silica/phosphonate matrix

  • Nicoleta PlesuEmail author
  • Gheorghe IliaEmail author
  • Paula Sfirloaga
  • Smaranda Iliescu
Article

Abstract

A method for preparing organic–inorganic hybrids containing organophosphorus compounds, silica, and polyaniline (PANI) was developed using sol–gel technique. This method allows the in situ synthesis of organic–inorganic hybrids by reacting tetraethoxysilane (TEOS), aniline, initiator, organophosphorus compound in formic acid. The formic acid has multiple functions: as solvent and acidic media for polymerization of aniline and reagent for sol–gel process. The use of an organophosphorus compound as coupling agent and the introduction of a conductive polymer in silica matrix was investigated.

Keywords

PANI Phosphonate Gelation Time Inorganic Hybrid Organophosphorus Compound 

References

  1. 1.
    Matsunaga T, Daifuku H, Nakajima T, Kawagoe T (1990) Polym Adv Technol 1:33CrossRefGoogle Scholar
  2. 2.
    Duek EAR, De Paoli M-A, Mastragostino M (1992) Adv Mater 4:287CrossRefGoogle Scholar
  3. 3.
    Boyle A, Genies EM, Lapkowski M (1989) Synth Met 28:769CrossRefGoogle Scholar
  4. 4.
    Sathiyanarayanan S, Muthukrishnan S, Venkatachari G, Trivedi DC (2005) Prog Org Coat 53:297CrossRefGoogle Scholar
  5. 5.
    Paoli De (1997) In: Nalwa HS (ed) Handbook of conductive molecules and polymers: vol 2: conductive polymers. Synthesis and electrical properties. Wiley, LondonGoogle Scholar
  6. 6.
    Boonstra AH, Bernardes JNM (1988) J Non-Cryst Solids 105:207CrossRefGoogle Scholar
  7. 7.
    Castro EG, Zarbin AJG, Galembeck A (2005) J Non-Cryst Solids 351:3704CrossRefGoogle Scholar
  8. 8.
    de Azevedo WM, Brondani DJ (2001) J Non-Cryst Solids 296:224CrossRefGoogle Scholar
  9. 9.
    Judeinstein P, Sanchez C (1996) J Mater Chem 6:511CrossRefGoogle Scholar
  10. 10.
    Loy DA, Shea KJ (1995) Chem Rev 95:1431CrossRefGoogle Scholar
  11. 11.
    Sanchez C, Ribot F, Lebeau B (1999) J Mater Chem 9:35CrossRefGoogle Scholar
  12. 12.
    Judeinstein P, Livage J, Zarudiansky JA, Rose R (1988) Solid State Ionics 28–30:1722CrossRefGoogle Scholar
  13. 13.
    Brinker CJ, Scherrer GW (1990) Sol–gel science, the physics and chemistry of sol–gel processing. Academic Press, San Diego, CAGoogle Scholar
  14. 14.
    Izumi K, Tanaka H, Murakami M, Degushi T, Morita A, Toghe N, Minami T (1990) J Non-Cryst Solids 121:344CrossRefGoogle Scholar
  15. 15.
    Novak BM (1993) Adv Mater 5:422CrossRefGoogle Scholar
  16. 16.
    de Azevedo WM, de Souza JM, de Melo JV (1999) Synth Met 100:241CrossRefGoogle Scholar
  17. 17.
    Sivaraman P, Rath SK, Hande VR, Thakur AP, Patri M, Samu AB (2006) Synth Met 156:1057CrossRefGoogle Scholar
  18. 18.
    Ita M, Uchida Y, Matsui K (2003) J Sol-Gel Sci Technol 26:479CrossRefGoogle Scholar
  19. 19.
    Wei Y, Yeh JM, Jin D, Jia X, Wang J, Jang G-W, Chen C, Gumbs RW (1995) Chem Mater 7:969CrossRefGoogle Scholar
  20. 20.
    Mattes BR, Knobbe ET, Fuqua PD, Nishida F, Chang E-W, Pierce BM, Dunn B, Kaner RB (1991) Synth Met 43:3183CrossRefGoogle Scholar
  21. 21.
    Mutin PH, Guerrero G, Vioux A (2003) C R Chimie 6:1153CrossRefGoogle Scholar
  22. 22.
    Nakatsuka T, Yamashita S (1983) J Appl Polym Sci 28:3549CrossRefGoogle Scholar
  23. 23.
    Randon J, Blanc P, Paterson R (1995) J Membr Sci 98:119CrossRefGoogle Scholar
  24. 24.
    Villemin D, Jaffres P-AN, echab B, Courivaud F (1997) Tetrahedron Lett 38:6581CrossRefGoogle Scholar
  25. 25.
    Bonhote P, Moser J, Humphry-Baker R, Vlachopoulos N, Zakeeruddin SM, Walder L, Gratzel M (1999) J Am Chem Soc 121:1324CrossRefGoogle Scholar
  26. 26.
    Will G, Nagaraja Rao JSS, Fitzmaurice D (1999) J Mater Chem 9:2297CrossRefGoogle Scholar
  27. 27.
    Michel R, Lussi JW, Csucs G, Reviakine I, Danuser G, Ketterer B, Hubbell JA, Textor M, Spencer ND (2002) Langmuir 18:3281CrossRefGoogle Scholar
  28. 28.
    Panitz JC, Wokaun A (1997) J Sol-Gel Sci Technol 9:251Google Scholar
  29. 29.
    Sharp GK (1994) J Sol-Gel Sci Technol 2:35CrossRefGoogle Scholar
  30. 30.
    Peng L, Weimin L, Qunji X (2004) Mater Chem Phys 87:109CrossRefGoogle Scholar
  31. 31.
    Li XW, Wang GC, Lu DM (2004) Appl Surf Sci 229:395CrossRefGoogle Scholar
  32. 32.
    Dimitriev OP (2004) Macromolecules 37:3388CrossRefGoogle Scholar
  33. 33.
    Somani PR, Marimuthu R, Mulik UP, Sainkar SR, Amalnerkar DP (1999) Synth Met 106:45CrossRefGoogle Scholar
  34. 34.
    Matsuda A, Kanzaki T, Yoshinori K, Tatsumisago M, Minami T (2001) Solid State Ionics 139:113CrossRefGoogle Scholar
  35. 35.
    Pereira da Silva JE, de Faria DLA, de Torresi SIC, Temperini MLA (2000) Macromolecules 33:3077CrossRefGoogle Scholar
  36. 36.
    Louarn G, Lapkowski M, Quillard S, Pron A, Buisson JP, Lefrant S (1996) J Phys Chem 100:6998CrossRefGoogle Scholar
  37. 37.
    Cochet M, Louarn G, Quillard S, Boyer MI, Buisson JP, Lefrant S (2000) J Raman Spectrosc 31:1029CrossRefGoogle Scholar
  38. 38.
    Li S, Shah A, Hsieh AJ, Haghighat R, Praveen SS, Mukherjee I, Wei E, Zhang Z, Wei Y (2007) Polymer 48:3982CrossRefGoogle Scholar
  39. 39.
    Albert F, Barbulescu N, Holzky C, Greffs C (1970) Analiza chimica organica (Organic chemical analysis), Ed. Tehnica, BucurestiGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Chemistry, Romanian AcademyTimisoaraRomania
  2. 2.National Research Institute for Electrochemistry and Condensed MatterTimisoaraRomania
  3. 3.Faculty of Chemistry-Biology and GeographyWest UniversityTimisoaraRomania

Personalised recommendations