Advertisement

Journal of Materials Science

, Volume 45, Issue 1, pp 74–81 | Cite as

Brazing of carbon–carbon composites to Nimonic alloys

  • N. V. MoutisEmail author
  • C. Jimenez
  • X. Azpiroz
  • Th. Speliotis
  • C. Wilhelmi
  • S. Messoloras
  • K. Mergia
Article

Abstract

Industrially produced Cf/C ceramic composites have been brazed to Nimonic alloys using a TiCuSil filler metal. Ιn order to accommodate the different linear coefficients of expansion between ceramic and metal as well as to provide compatibility between the surfaces to be joined, the Cf/C surface was metallized through the deposition of a chromium layer. Subsequent heat treatments were carried out to develop intermediate layers of chromium carbides. Crack-free joints have been produced and shear tests show that failure occurs within the composite. At the Cf/C-filler interface a layered structure of the metallic elements is observed. Titanium is depleted from the filler zone and interacts with the carbon to form carbides. In the filler region, Ag and Cu rich regions are formed.

Keywords

Carbide Filler Metal Chromium Carbide Filler Region Interaction Zone 

Notes

Acknowledgments

This study has been carried out within the framework of the Integrated European Project “ExtreMat” (contract NMP-CT-2004-500253) with financial support by the European Community.

References

  1. 1.
    Schmidt S, Beyer S, Knabe H, Immich H, Meistring R, Gessler A (2004) Acta Astronaut 55:409CrossRefGoogle Scholar
  2. 2.
    Merola M, Akiba M, Barabash V, Mazul I (2002) J Nucl Mater 307:1524CrossRefGoogle Scholar
  3. 3.
    Goodman D, Singler R (1998) NASA CR 97:206679Google Scholar
  4. 4.
    Nicholas MG, Peteves SD (1994) Scr Metall Mater 31:1091CrossRefGoogle Scholar
  5. 5.
    Peteves SD, Paulasto M, Ceccone G, Stamos V (1998) Acta Mater 46:2407Google Scholar
  6. 6.
    Ashworth MA, Jacobs MH, Davies S (2000) Mater Design 21:351CrossRefGoogle Scholar
  7. 7.
    Morscher GN, Singh M, Shpargel TP, Asthana R (2006) Mater Sci Eng A418:19CrossRefGoogle Scholar
  8. 8.
    Trester PW, Valentine PG, Johnson WR, Chin E (1996) J Nucl Mater 233–237:9Google Scholar
  9. 9.
    Salvo M, Ferraris M, Lemoine P, Appendine M (1996) J Nucl Mater 233–237:949CrossRefGoogle Scholar
  10. 10.
    Gotoh Y, Okamura H, Kajiura S (1998) J Nucl Mater 258–263:271CrossRefGoogle Scholar
  11. 11.
    Salvo M, Lemoine P, Ferraris M, Appendino Montorsi M, Matera R (1995) J Nucl Mater 226:67CrossRefGoogle Scholar
  12. 12.
    Liu JY, Chen S, Chin BA (1994) J Nucl Mater 212–215:1590CrossRefGoogle Scholar
  13. 13.
    Appendino P, Casalegno V, Ferraris M, Grattarola M, Merola M, Salvo M (2003) Fusion Eng Des 66–68:225CrossRefGoogle Scholar
  14. 14.
    Singh M, Shpargel TP, Morscher GN, Asthana R (2005) Mater Sci Eng A 412:123CrossRefGoogle Scholar
  15. 15.
    Youqiong Q, Jicai F (2007) Mater Sci Eng A 454–455:322Google Scholar
  16. 16.
    Merola M, Danner W, Palmer J, Vielder G, Wu CH (2003) Fusion Eng Des 66–68:211CrossRefGoogle Scholar
  17. 17.
    Isola C, Salvo M, Ferraris M (1998) J Eur Ceram Soc 18:1017CrossRefGoogle Scholar
  18. 18.
    Schedler B, Huber T, Friedrich T, Eidenberger E, Kapp M, Scheu C, Pippan R, Clemens H (2007) Phys Scr T 128:200CrossRefGoogle Scholar
  19. 19.
    Appendino P, Ferraris M, Casalegno V, Salvo M, Merola M, Grattarola M (2004) J Nucl Mater 329–333:1563CrossRefGoogle Scholar
  20. 20.
    Ferraris M, Casalegno V, Salvo M (2005) Process to join carbon based materials to metals and its applications. Patent WO/2005/037734Google Scholar
  21. 21.
    Libera S, Visca E (2006) Junction process for a ceramic material and a metallic material with the interposition of a transition material. Patent WO/2006/024971Google Scholar
  22. 22.
    Revirand P, Michel J, Benoit D, Fromentin JF, Gillia O (2007) Brazed joint between a metal part and a ceramic part. Patent WO/2007/066053Google Scholar
  23. 23.
    Hanson WB, Ironside KI, Fernie JA (2000) Acta Mater 48(18–19):4673CrossRefGoogle Scholar
  24. 24.
    Morizono Y, Nishida M, Chiba A, Nakata T (2004) J Ceramic Soc Japan 112(6):305CrossRefGoogle Scholar
  25. 25.
    Loehman RE (1989) Am Ceram Soc Bull 68:890Google Scholar
  26. 26.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon, AmsterdamGoogle Scholar
  27. 27.
    Standing R, Nicholas M (1978) J Mater Sci 13:1509. doi: https://doi.org/10.1007/BF00553207 CrossRefGoogle Scholar
  28. 28.
    Li JG (1992) J Mater Sci Lett 11:1551CrossRefGoogle Scholar
  29. 29.
    Grigorenko N, Poluyanskaya V, Eustathopoulos N, Naidich Y (1998) In: Bellosi A, Kosmac T, Tomsia AP (eds) Interfacial science of ceramics joining. Kluwer Academic Publishers, Boston, pp 69–78Google Scholar
  30. 30.
    Grigorenko N, Poluyanskaya V, Eustathopoulos N, Naidich YV (1997) In: Eustathopoulos N, Sobczak N (eds) Proceedings of the Second International conference on high-temperature capillarity, Foundry Residential Institute, Krakow, pp 27–35Google Scholar
  31. 31.
    Singh M, Shpargel TP, Morscher G, Asthana R (2005) In: Singh M, Kerans RJ, Lara-Curzio E, Naslain R (eds) Proceedings of the fifth international conference on high-temperature ceramic–matrix composites (HTCMC-5), The American Ceramic Society, Westerville, OH, pp 457–462Google Scholar
  32. 32.
    Moutis NV, Jimenez C, Speliotis T, Azpiroz X, Mergia K (2009) Adv Mater Res 59:209CrossRefGoogle Scholar
  33. 33.
    Singh M, Asthana R, Shpargel TP (2007) Mater Sci Eng A 452–453:699CrossRefGoogle Scholar
  34. 34.
    Balseiro CA, Merán-Lôpez JJ (1989) Phys Rev B21:349Google Scholar
  35. 35.
    Van Loo FJJ, Bastin GF (1989) Metall Trans A 20:403CrossRefGoogle Scholar
  36. 36.
    Zhu Y, Wang L, Yao W, Cao L (2001) App Surf Sci 171:143CrossRefGoogle Scholar
  37. 37.
    ICDD PDF:36-1482Google Scholar
  38. 38.
    Singh M, Asthana R (2008) Compos Sci Technol 68:3010CrossRefGoogle Scholar
  39. 39.
    Kleykamp H (2001) J Alloys Compd 321:138CrossRefGoogle Scholar
  40. 40.
    Zhang S, Wu WT, Wang MC, Man HC (2001) Surf Coat Technol 138:95CrossRefGoogle Scholar
  41. 41.
    Morscher GN, Singh M, Shpargel T, Asthana R (2006) Mater Sci Eng A 418:19CrossRefGoogle Scholar
  42. 42.
    Li M, Matsuyama R, Sakai M (1999) Carbon 37:1749CrossRefGoogle Scholar
  43. 43.
    Iwashita N, Sawada Y, Shimizu K, Shinke S, Shioyama H (1995) Carbon 33:405CrossRefGoogle Scholar
  44. 44.
    Fujita K, Sakai H, Iwashita N, Sawada Y (1999) Composites Part A 30:497CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • N. V. Moutis
    • 1
    Email author
  • C. Jimenez
    • 2
  • X. Azpiroz
    • 2
  • Th. Speliotis
    • 3
  • C. Wilhelmi
    • 4
  • S. Messoloras
    • 1
  • K. Mergia
    • 1
  1. 1.National Center for Scientific Research “Demokritos”Institute of Nuclear Technology and Radiation ProtectionAthensGreece
  2. 2.Fundación INASMET, Parque TecnológicoSan SebastianSpain
  3. 3.National Center for Scientific Research “Demokritos”Institute of Materials ScienceAthensGreece
  4. 4.EADS Innovation WorksMunichGermany

Personalised recommendations