Journal of Materials Science

, Volume 44, Issue 23, pp 6427–6436 | Cite as

Morphology development in nanoclay filled rubber compounds and rubber blends detected by online measured electrical conductance

  • Z. Ali
  • H. H. LeEmail author
  • S. Ilisch
  • H.-J. Radusch


The online measured electrical conductance (OMEC) during the rubber mixing process has been used as a novel method to characterize the dispersion of organoclay in rubber compounds and blends. This method was also used for the investigation of morphology development and kinetics of organoclay distribution in carboxylated hydrogenated nitrile butadiene rubber (XHNBR) and hydrogenated nitrile butadiene rubber (HNBR) as well as blends of HNBR with natural rubber (NR). The synchronized increase of the OMEC measured directly in the mixing chamber of the internal mixer along with dispersion of organoclay in the rubber matrix has been observed. The conductivity signal is sensitive to the intercalation/exfoliation process of organoclay in rubber compounds. The correlation between the OMEC and intercalation/exfoliation of organoclay has been determined by various offline experimental techniques like atomic force microscopy (AFM), transmission electron microscopy (TEM), and small angle X-ray scattering (SAXS). In heterogeneous blends the organoclay not only has the tendency to localize in one specific phase, but also strongly influence the development of the blend morphology, which has been nicely correlated with the OMEC chart of HNBR/(NR–clay) blends. A deeper insight into the mixing kinetics, clay transfer as well as development of the blend morphology was achieved on the basis of OMEC chart.


Clay Atomic Force Microscopy Characteristic Point Natural Rubber Rubber Matrix 



The authors wish to thank the German Research Foundation (DFG) and the Higher Education Commission Pakistan (HEC) for the financial support of this work. The group of Prof. Georg H. Michler (Institute of Physics, Martin Luther University, Halle-Wittenberg, Germany) for TEM and Prof Thomas Thurn-Albrecht (Institute of Physics, Polymer Physics, Martin Luther University, Halle-Wittenberg, Germany) for discussion of SAXS investigation are highly acknowledged.


  1. 1.
    Ogawa M, Takizawa Y (1999) Chem Mater 11:30CrossRefGoogle Scholar
  2. 2.
    Wu J, Lerner M (1993) Chem Mater 5:835CrossRefGoogle Scholar
  3. 3.
    Fornes TD, Yoon PJ, Keskkula H, Paul DR (2001) Polymer 42:9929CrossRefGoogle Scholar
  4. 4.
    Reichert P, Nitz H, Klinke S, Brandsch R, Thomann R, Mülhaupt R (2000) Macromol Mater Eng 275:8CrossRefGoogle Scholar
  5. 5.
    Gu SY, Ren J, Wang QF (2004) J Appl Polym Sci 91:2427CrossRefGoogle Scholar
  6. 6.
    Gopakumar TG, Lee JA, Kontopoulou M, Parent JS (2002) Polymer 43:5483CrossRefGoogle Scholar
  7. 7.
    Lagaron JM, Catala R, Gavara R (2004) Mater Sci Technol 20:1CrossRefGoogle Scholar
  8. 8.
    Chang JH, An YUJ (2002) J Polym Sci Polym Phys 40:670CrossRefGoogle Scholar
  9. 9.
    Ma J, Qi ZY (2001) J Appl Polym Sci 82:3611CrossRefGoogle Scholar
  10. 10.
    Khatua BB, Lee DJ, Kim HY, Kim JK (2004) Macromolecules 37:2454CrossRefGoogle Scholar
  11. 11.
    Hong JS, Kim YK, Ahn KH, Lee SJ, Kim C (2007) Rheol Acta 46:469CrossRefGoogle Scholar
  12. 12.
    Chow WS, Ishak ZA, Ishiaku US, Karger-Kocsis J, Apostolov AA (2004) J Appl Polym Sci 91:175CrossRefGoogle Scholar
  13. 13.
    Li Y, Shimizu H (2004) Polymer 45:7381CrossRefGoogle Scholar
  14. 14.
    Mehrabzadeh M, Kamal MR (2002) Can J Chem Eng 80:1083CrossRefGoogle Scholar
  15. 15.
    Fang Z, Harrats C, Moussaif N, Groeninck G (2007) J Appl Polym Sci 106:3125CrossRefGoogle Scholar
  16. 16.
    Ray SS, Pouliot S, Bousmina M, Utracki LA (2004) Polymer 45:8403CrossRefGoogle Scholar
  17. 17.
    Si M, Araki T, Ade H, Kilcoyne ALD, Fisher R, Sokolov JC, Rafailovich MH (2006) Macromolecules 39:4793CrossRefGoogle Scholar
  18. 18.
    Gelfer MY, Song HH, Liu L, Hsiao BS, Chu B, Rafailovich M, Si M, Zaitsev V (2003) J Polym Sci Polym Phys 41:44CrossRefGoogle Scholar
  19. 19.
    Wang Y, Zhang Q, Fu Q (2003) Macromol Rapid Commun 24:231CrossRefGoogle Scholar
  20. 20.
    Kurian YP, Zhang LQ, Wang YQ, Liang Y, Yu DS (2001) J Appl Polym Sci 82:2835Google Scholar
  21. 21.
    Sadhu S, Bhowmick AK (2005) J Mater Sci 40:1633. doi: CrossRefGoogle Scholar
  22. 22.
    Kim J, Oh T, Lee D (2003) Polym Int 52:1058CrossRefGoogle Scholar
  23. 23.
    Cho JW, Paul DR (2001) Polymer 42:1083CrossRefGoogle Scholar
  24. 24.
    Dennis HR, Hunter DI, Chang D, Kim S, White J, Cho JW, Paul DR (2001) Polymer 42:9513CrossRefGoogle Scholar
  25. 25.
    Nah CW, Ryu HJ, Han SH, Rhee JM, Lee MH (2001) Polym Int 50:1265CrossRefGoogle Scholar
  26. 26.
    Wang K, Liang S, Du RN, Zhang Q, Fu Q (2004) Polymer 45:7953CrossRefGoogle Scholar
  27. 27.
    Van der Hart DL, Asano A, Gilman JW (2001) Chem Mater 13:3781CrossRefGoogle Scholar
  28. 28.
    Loo LS, Gleason KK (2003) Macromolecules 36:2587CrossRefGoogle Scholar
  29. 29.
    Le HH, Qamer Z, Ilisch S, Radusch H-J (2006) Rubber Chem Technol 79:621CrossRefGoogle Scholar
  30. 30.
    Le HH, Kasaliwal GR, Ilisch S, Radusch H-J (2009) Kautsch Gummi Kunstst (in press)Google Scholar
  31. 31.
    Kortaberria G, Solar L, Jimeno A, Arruti P, Gomez C, Mondragon I (2006) J Appl Polym Sci 102:5927CrossRefGoogle Scholar
  32. 32.
    Hussain F, Chen JH, Hojjati M (2007) Mater Sci Eng A 445:467CrossRefGoogle Scholar
  33. 33.
    Aranda P, Galvan JC, Casal B, Ruehitzky E (1992) Electrochim Acta 37:1573CrossRefGoogle Scholar
  34. 34.
    Le HH, Ali Z, Ilisch S, Radusch H-J (2007) In: Proceedings of Technomer 2007, Chemnitz, Germany, 15–17 Nov 2007, p 29 and CDGoogle Scholar
  35. 35.
    Ali Z, Le HH, Ilisch S, Radusch H-J (2009) J Appl Polym Sci 113:667CrossRefGoogle Scholar
  36. 36.
    Bur AJ, Lee YH, Roth SC, Start PR (2005) Polymer 46:10908CrossRefGoogle Scholar
  37. 37.
    Sadhu S, Bhowmick AK (2004) J Polym Sci Polym Phys 42:1573CrossRefGoogle Scholar
  38. 38.
    Park J, Jana S (2003) Macromolecules 36:8391CrossRefGoogle Scholar
  39. 39.
    Shiga S, Furuta M (1985) Rubber Chem Technol 58:1Google Scholar
  40. 40.
    Gatos KG, Sawanis NS, Apostolov AA, Thomann R, Karger-Kocsis J (2004) Macromol Mater Eng 289:1079CrossRefGoogle Scholar
  41. 41.
    Wu YP, Jia QX, Yu DS, Zhang LQ (2003) J Appl Polym Sci 89:3855CrossRefGoogle Scholar
  42. 42.
    Schön F, Thmann R, Gronski W (2002) Macomol Symp 189:105CrossRefGoogle Scholar
  43. 43.
    Kim J, Oh T, Lee D (2004) Polym Int 53:406CrossRefGoogle Scholar
  44. 44.
    Wu YP, Zhang LQ, Wang YQ, Liang Y, Yu DS (2001) J Appl Polym Sci 82:2842CrossRefGoogle Scholar
  45. 45.
    Kojima Y, Fukumori K, Usuki A, Kurauchi T (1993) J Mater Sci Lett 12:889CrossRefGoogle Scholar
  46. 46.
    Lyu S, Jones TD, Bates FS, Macosko CW (2002) Macromolecules 35:7845CrossRefGoogle Scholar
  47. 47.
    Sundararaj U, Macosko CW (1995) Macromolecules 28:2647CrossRefGoogle Scholar
  48. 48.
    Alexander M, Dubois P (2000) Mater Sci Eng 28:1CrossRefGoogle Scholar
  49. 49.
    Giannelis EP, Krishnamoorti R, Manias E (1999) Adv Polym Sci 138:107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center of Engineering Sciences, Polymer TechnologyMartin Luther University Halle-WittenbergHalleGermany

Personalised recommendations