Journal of Materials Science

, Volume 44, Issue 23, pp 6416–6422 | Cite as

Effect of interstitial lithium atom on crystal and electronic structure of silicon oxynitride

  • Bin Liu
  • Jingyang WangEmail author
  • Fangzhi Li
  • Hongqiang Nian
  • Yanchun Zhou


Plane-wave pseudopotential total energy method was used to calculate the effects of impurity Li atom on crystal structure, electronic and dielectric properties of Si2N2O. It is proved that Li atom prefers to occupy interstitial site than to substitute the Si atomic site. In addition, the presence of interstitial Li atom leads to relaxation of internal coordinates of Si, N, and O atoms, and bring out a different X-ray diffraction (XRD) pattern compared with that of a pure Si2N2O. The result is helpful to understand the diversity of experimental XRD data for Si2N2O sintered with and without Li2O additive. The theoretical polycrystalline dielectric constant of Li-doped Si2N2O is larger than that of a pure one, which can be attributed to a reduction of band gap. The mechanism is that interstitial Li atom provides extra electronic states at the bottom of conductive band.


Li2O Interstitial Site Lithium Atom LaPO4 Silicon Oxynitride 



This work was supported by the National Outstanding Young Scientist Foundation for Y C Zhou, and the Natural Sciences Foundation of China under Grant Nos. 50672102 and 50772114.


  1. 1.
    Buchanan DA (1999) IBM J Res Dev 43(3):245CrossRefGoogle Scholar
  2. 2.
    Roucka R, Tolle J, Chizmeshya AVG et al (2002) Phys Rev Lett 88:206102CrossRefGoogle Scholar
  3. 3.
    Roucka R, Tolle J, Crozier PA et al (2001) Appl Phys Lett 79:2080CrossRefGoogle Scholar
  4. 4.
    van Weeren R, Leone EA, Curran S et al (1994) J Am Ceram Soc 77:2699CrossRefGoogle Scholar
  5. 5.
    Wendor P, de Ruiter R (1989) J Chem Soc Chem Commun 320Google Scholar
  6. 6.
    Devine RAB, Duraud JP, Doryhee E (2000) Structure and imperfections in amorphous and crystalline silicon dioxide. Wiely, Bognor RegisGoogle Scholar
  7. 7.
    Gritsenko VA, Wong H, Xu JB et al (1999) J Appl Phys 86:3234CrossRefGoogle Scholar
  8. 8.
    Liu B, Wang JY, Li FZ et al (2009) J Phys Chem Solids 70:982CrossRefGoogle Scholar
  9. 9.
    Tong QF, Zhou YC, Wang JY et al (2007) J Eur Ceram Soc 27:4767CrossRefGoogle Scholar
  10. 10.
    Lu JG, Zhang YZ, Ye ZZ et al (2006) Appl Phys Lett 89:112113CrossRefGoogle Scholar
  11. 11.
    Li ZY, Zhou CJ, Lin W et al (2007) Chin J Luminescence 28:1Google Scholar
  12. 12.
    Shirakawa J, Nakayama M, Wakihara M et al (2006) J Phys Chem B 110:17743CrossRefGoogle Scholar
  13. 13.
    Larker R (1992) J Am Ceram Soc 75:62CrossRefGoogle Scholar
  14. 14.
    Na-Phattalung S, Smith MF, Kim K et al (2006) Phys Rev B 73:125205CrossRefGoogle Scholar
  15. 15.
    Cho E, Han S, Ahn HS et al (2006) Phys Rev B 73:193202CrossRefGoogle Scholar
  16. 16.
    Panero WR, Stixrude L, Ewing RC (2004) Phys Rev B 70:054110CrossRefGoogle Scholar
  17. 17.
    Chartier A, Meis C, Weber WJ et al (2002) Phys Rev B 65:134116CrossRefGoogle Scholar
  18. 18.
    Ching WY (2004) J Am Ceram Soc 87:1996CrossRefGoogle Scholar
  19. 19.
    Xu YN, Ching WY (1995) Phys Rev B 51:17379CrossRefGoogle Scholar
  20. 20.
    Segall MD, Lindan PLD, Probert MJ et al (2002) J Phys Condens Matter 14:2717CrossRefGoogle Scholar
  21. 21.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  22. 22.
    Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566CrossRefGoogle Scholar
  23. 23.
    Monkhorst HJ, Pack JD (1977) Phys Rev B 16:1748CrossRefGoogle Scholar
  24. 24.
    Pfrommer BG, Côté M, Louie SG et al (1997) J Comput Phys 131:233CrossRefGoogle Scholar
  25. 25.
    Wang JY, Zhou YC, Liao T et al (2006) Appl Phys Lett 89:021917CrossRefGoogle Scholar
  26. 26.
    Liu B, Wang JY, Zhang J et al (2009) Appl Phys Lett 94:181906CrossRefGoogle Scholar
  27. 27.
    Wang JY, Zhou YC, Lin ZJ et al (2006) Phys Rev B 73:134107CrossRefGoogle Scholar
  28. 28.
    Wang JY, Zhou YC, Lin ZJ (2005) Appl Phys Lett 87:051902CrossRefGoogle Scholar
  29. 29.
    Liu B, Wang JY, Zhou YC et al (2007) Acta Mater 55:2949CrossRefGoogle Scholar
  30. 30.
    Zhang HI, Callaway J (1969) Phys Rev 181:1163CrossRefGoogle Scholar
  31. 31.
    Baraton MI, Billy M, Labbe JC et al (1988) Mater Res Bull 23:1087CrossRefGoogle Scholar
  32. 32.
    Idrestedt I, Brosset C (1964) Acta Chim Scand 18:1879CrossRefGoogle Scholar
  33. 33.
    Srivinasa SR, Cartz L, Jorgensen JD et al (1977) J Appl Crystallogr 10:167CrossRefGoogle Scholar
  34. 34.
    Kroll P, Milko M (2003) Z Anorg Allg Chem 629:1737CrossRefGoogle Scholar
  35. 35.
    Mirgorodsky AP, Baraton MI, Quintard PQ (1989) J Phys Condens Matter 1:10053CrossRefGoogle Scholar
  36. 36.
    Guo XG, Chen XS, Lu W (2003) Solid State Commun 126:441CrossRefGoogle Scholar
  37. 37.
    Guo ML, Zhang XD, Gu HE et al (2008) Cent Eur J Phys 6:321Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bin Liu
    • 1
    • 2
  • Jingyang Wang
    • 1
    • 3
    Email author
  • Fangzhi Li
    • 1
    • 2
  • Hongqiang Nian
    • 1
    • 2
  • Yanchun Zhou
    • 1
  1. 1.Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.High-performance Ceramic Division, Institute of Metal Research, Chinese Academy of SciencesShenyangChina

Personalised recommendations