Advertisement

Journal of Materials Science

, Volume 44, Issue 23, pp 6408–6415 | Cite as

Synthesis and chemical properties of photoluminescent self-doped polyanilines

  • Isao YamaguchiEmail author
  • Hideo Higashi
  • Moriyuki Sato
Article

Abstract

Fluorescent self-doped polyanilines (PAS-AntPy-a and PAS-AntPy-b) were obtained by the pyridinium sulfonation of poly(2-methoxyaniline-5-sulfonic acid) (PAS) with 4-(2-anthracene-9-yl-vinyl)pyridine (AntPy). The degrees of pyridinium sulfonation in PAS-AntPy-a and PAS-AntPy-b were 0.70 and 0.97, respectively. A neutral polyaniline with an AntPy side unit (PANI-AntPy) was synthesized by the oxidative polymerization of N-(2-aminophenyl)-4-(2-anthracene-9-yl-vinyl)pyridinium chloride. The UV-vis spectra of PAS-AntPy-a and PAS-AntPy-b exhibited an absorption due to the polaron band that was derived from the protonation of amine groups in the polyaniline backbone with the remaining sulfonic acid proton. In contrast, PANI-AntPy did not exhibit absorption due to the polaron band. PAS-AntPy-a, PAS-AntPy-b, and PANI-AntPy were photoluminescent in a solution. The electric conductivity of PAS-AntPy-a was σ = 1.5 × 10−7 S cm−1, which was higher than that of H2SO4 doped PANI (4.2 × 10−9 S cm−1) reported previously.

Keywords

Polyaniline Polymer Backbone Sulfonic Acid Group Polaron Band Ammonium Peroxodisulfate 

References

  1. 1.
    Trivedi DC (1997) In: Nalwa H (ed) Handbook of organic conductive molecules and polymers. Wiley, London, p 506Google Scholar
  2. 2.
    Kang ET, Neoh KG, Tan KL (1998) Prog Polym Sci 23:277CrossRefGoogle Scholar
  3. 3.
    Gospodinova N, Terlemezyan L (1998) Prog Polym Sci 23:1443CrossRefGoogle Scholar
  4. 4.
    Yamamoto T, Ushiro A, Yamaguchi I, Sasaki S (2003) Macromolecules 36:7075CrossRefGoogle Scholar
  5. 5.
    Brenneman KR, Hsu CH, Shih H, Epstein AJ (2001) Macromolecules 34:2648CrossRefGoogle Scholar
  6. 6.
    Shimizu S, Saitoh T, Uzawa M, Yuasa M, Yano K, Maruyama T, Watanabe K (1997) Synth Met 85:1337CrossRefGoogle Scholar
  7. 7.
    Wei XL, Wang YZ, Long SM, Bobeczko C, Epstein AJ (1996) J Am Chem Soc 118:2545CrossRefGoogle Scholar
  8. 8.
    Chen SA, Hwang GW (1996) Macromolecules 29:3950CrossRefGoogle Scholar
  9. 9.
    Chen SA, Hwang GW (1995) J Am Chem Soc 117:10055CrossRefGoogle Scholar
  10. 10.
    Yue J, Gordon G, Epstein AJ (1992) Polymer 33:4410CrossRefGoogle Scholar
  11. 11.
    Kaneko M, Kaneto K (1998) React Funct Polym 37:155CrossRefGoogle Scholar
  12. 12.
    Yamaguchi I, Shigesue S, Sato M (2009) React Funct Polym 69:91CrossRefGoogle Scholar
  13. 13.
    Liu B, Bazan GC (2004) J Am Chem Soc 126:1942CrossRefGoogle Scholar
  14. 14.
    Nilsson KPR, Inganäs O (2003) Nat Mater 2:419CrossRefGoogle Scholar
  15. 15.
    Ho HA, Béra-Abérem M, Leclerc M (2005) Chem Eur J 11:1718CrossRefGoogle Scholar
  16. 16.
    Song X, Wang HL, Shi J, Park JW, Swanson BI (2002) Chem Mater 14:2342CrossRefGoogle Scholar
  17. 17.
    Liu B, Bazan GC (2004) Chem Mater 16:4467CrossRefGoogle Scholar
  18. 18.
    Shirota Y, Kageyama H (2007) Chem Rev 107:953CrossRefGoogle Scholar
  19. 19.
    Akcelrud L (2003) Prog Polym Sci 28:875CrossRefGoogle Scholar
  20. 20.
    Amrithesh M, Aravind S, Jayalekshmi S, Jayasree RS (2008) J Alloys Compd 458:532CrossRefGoogle Scholar
  21. 21.
    Yamaguchi I, Higashi H, Shigesue S, Shingai S, Sato M (2007) Tetrahedron Lett 48:7778CrossRefGoogle Scholar
  22. 22.
    Fuoss RM, Strauss UP (1948) J Polym Sci 3246Google Scholar
  23. 23.
    Vaganova E, Meshulam G, Kotler Z, Rozenberg M, Yitzchaik S (2000) J Fluoresc 10:81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculty of Science and Engineering, Department of Material ScienceShimane UniversityMatsueJapan

Personalised recommendations