Journal of Materials Science

, Volume 45, Issue 1, pp 39–45 | Cite as

Effect of process parameters on stir zone microstructure in Ti–6Al–4V friction stir welds

  • L. Zhou
  • H. J. LiuEmail author
  • Q. W. Liu


The effects of the main process variables on the stir zone microstructure in friction stir welds were investigated for Ti–6Al–4V. Welds were produced by employing varying welding speeds under a constant rotation speed or different rotation speeds at a constant welding speed. The stir zone microstructure was examined by optical microscopy and transmission electron microscopy. It was found that the stir zone microstructure was determined by the parameters controlling temperature and deformation history during the friction stir welding. A bimodal microstructure characterized by primary α and transformed β with lamellar α + β or a full lamellar microstructure composed of basket-weave α + β lamellae could be developed in the stir zone. The microstructural evolution mechanism in the stir zone was discussed.


Rotation Speed Titanium Alloy Friction Stir Welding Welding Speed Heat Affected Zone 



The research was sponsored by the National Key Technology Research and Development Program No. 2006BAF04B09, Ministry of Science and Technology, P.R. China, and was supported by the Program of Excellent Team in Harbin Institute of Technology, P.R. China.


  1. 1.
    Polmear IJ (1996) Mater Trans JIM 37:12CrossRefGoogle Scholar
  2. 2.
    Venkateswaran P, Xu ZH, Li XD, Reynolds AP (2009) J Mater Sci 44:4140. doi: CrossRefGoogle Scholar
  3. 3.
    Chen T (2009) J Mater Sci 44:2573. doi: CrossRefGoogle Scholar
  4. 4.
    Lee CY, Lee WB, Kim JW, Choi DH, Yeon YM, Jung SB (2008) J Mater Sci 43:3296. doi: CrossRefGoogle Scholar
  5. 5.
    Gerlich A, Yamamoto M, North TH (2008) J Mater Sci 43:2. doi: CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Chen JT (2008) J Mater Sci 43:222. doi: CrossRefGoogle Scholar
  7. 7.
    Mishra RS, Ma ZY (2005) Mater Sci Eng R 50:1CrossRefGoogle Scholar
  8. 8.
    Nandan R, DebRoy T, Bhadeshia H (2008) Prog Mater Sci 53:980CrossRefGoogle Scholar
  9. 9.
    Bhadeshia H, DebRoy T (2009) Sci Technol Weld Join 14:193CrossRefGoogle Scholar
  10. 10.
    Gan W, Li ZT, Khurana S (2007) Sci Technol Weld Join 12:610CrossRefGoogle Scholar
  11. 11.
    Lienert TJ, Stellwag WL, Grimmett BB, Warke RW (2003) Weld J 82:1CrossRefGoogle Scholar
  12. 12.
    Pilchak AL, Juhas MC, Williams JC (2007) Metall Mater Trans A 38:435CrossRefGoogle Scholar
  13. 13.
    Reynolds AP, Hood E, Tang W (2005) Scr Mater 52:491CrossRefGoogle Scholar
  14. 14.
    Pilchak AL, Juhas MC, Williams JC (2007) Metall Mater Trans A 38:401CrossRefGoogle Scholar
  15. 15.
    Mironov S, Zhang Y, Sato YS, Kokawa H (2008) Scr Mater 59:27CrossRefGoogle Scholar
  16. 16.
    Mironov S, Zhang Y, Sato YS, Kokawa H (2008) Scr Mater 59:511CrossRefGoogle Scholar
  17. 17.
    Pilchak AL, Norfleet DM, Juhas MC, Williams JC (2008) Metall Mater Trans A 39:1519CrossRefGoogle Scholar
  18. 18.
    Sanders DG, Ramulu M, Edwards PD (2008) Materialwiss Werkstofftech 39:353CrossRefGoogle Scholar
  19. 19.
    Sanders DG, Ramulu M, Klock-McCook EJ, Edwards PD, Reynolds AP, Trapp T (2008) J Mater Eng Perform 17:187CrossRefGoogle Scholar
  20. 20.
    Lee WB, Lee CY, Chang WS, Yeon YM, Jung SB (2005) Mater Lett 59:3315CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S (2008) Mater Sci Eng A 488:25CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S (2008) Mater Sci Eng A 485:448CrossRefGoogle Scholar
  23. 23.
    Ramirez AJ, Juhas MC (2003) Mater Sci Forum 426–432:2999CrossRefGoogle Scholar
  24. 24.
    Lienert TJ, Jata KV, Wheeler R, Seetharaman V (2001) Proceedings of joining of advanced and specialty materials III. ASM International, Materials ParkGoogle Scholar
  25. 25.
    Juhas MC, Viswanathan GB, Fraser HL (2001) Proceedings of lightweight alloys for aerospace application. TMS, WarrendaleGoogle Scholar
  26. 26.
    Lüjering G (1998) Mater Sci Eng A 243:32CrossRefGoogle Scholar
  27. 27.
    Leyens C, Peters M (2003) Titanium and titanium alloys. Wiley-VCH, CologneCrossRefGoogle Scholar
  28. 28.
    Ding R, Guo Z, Wilson A (2002) Mater Sci Eng A 327:233CrossRefGoogle Scholar
  29. 29.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  30. 30.
    Hassan AA, Prangnell PB, Norman AF, Price DA, Williams SW (2003) Sci Technol Weld Join 8:257CrossRefGoogle Scholar
  31. 31.
    Cavaliere P, Squillace A, Panella F (2008) J Mater Process Technol 200:364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Welding Production TechnologyHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations