Advertisement

Journal of Materials Science

, Volume 44, Issue 23, pp 6333–6337 | Cite as

Thermal stability of the optical band gap and structural order in hot-wire-deposited amorphous silicon

  • C. J. Arendse
  • G. F. MalgasEmail author
  • T. F. G. Muller
  • B. A. van Heerden
  • D. Knoesen
Article

Abstract

We report on the thermal stability of the optical band gap and structural disorder in hot-wire-deposited a-Si:H with different atomic hydrogen concentrations. Furthermore, the changes in the structural disorder will be correlated with the changes in the optical band gap. Raman spectroscopy shows evidence that no crystallization is induced at temperatures below 550 °C and that the structural disorder increases upon annealing. The increase in the structural disorder results in a broadening of the valence and conduction band tails, thereby pinning the valence and conduction band edges closer together, resulting in a decrease in the optical band gap. Hydrogen evolution occurs at 400 °C via the release of molecular hydrogen trapped in voids, which results in the blistering of the sample surface.

Keywords

Molecular Hydrogen Amorphous Silicon Structural Disorder Isochronal Annealing Device Quality 

Notes

Acknowledgements

The authors acknowledge the financial support of the National Research Foundation of South Africa (GUN. 2050646). The authors are especially thankful to Dr. Anke Brockhoff, formerly of the Debye Institute of Utrecht University, for the Raman spectroscopy measurements.

References

  1. 1.
    Madan A, Shaw MP (1988) The physics and applications of amorphous semiconductors. Academic Press, Orlando, FLGoogle Scholar
  2. 2.
    Chu V, Jarego J, Silva H, Silva T, Reissner M, Brogueira P, Conde JP (1997) Appl Phys Lett 70:2714CrossRefGoogle Scholar
  3. 3.
    Meiling H, Schropp REI (1997) Appl Phys Lett 70:2681CrossRefGoogle Scholar
  4. 4.
    Staebler DL, Wronski CR (1977) Appl Phys Lett 31:292CrossRefGoogle Scholar
  5. 5.
    Street RA, Winer K (1989) Phys Rev B 40:6236CrossRefGoogle Scholar
  6. 6.
    Berntsen AJM (1993) PhD thesis, Utrecht University, Utrecht, The NetherlandsGoogle Scholar
  7. 7.
    Feenstra KF, Schropp REI, van der Weg WF (1999) J Appl Phys 85:6843CrossRefGoogle Scholar
  8. 8.
    Maessen KHM, Pruppers MJM, Bezemer J, Habraken FHPM, van der Weg WF (1987) Mater Res Soc Symp Proc 95:201CrossRefGoogle Scholar
  9. 9.
    Meiling H, van den Boogaard MJ, Schropp REI, Bezemer J, van der Weg WF (1990) Mater Res Soc Symp Proc 192:645CrossRefGoogle Scholar
  10. 10.
    Maley N, Lannin JS (1987) Phys Rev B 36:1146CrossRefGoogle Scholar
  11. 11.
    Wiesmann H, Ghosh AK, McMahon T, Strongin M (1979) J Appl Phys 50:3752CrossRefGoogle Scholar
  12. 12.
    Arendse CJ, Malgas GF, Muller TFG, Knoesen D, Oliphant CJ, Motaung DE, Halindintwali S, Mwakikunga BW (2009) Nanoscale Res Lett 4:307CrossRefGoogle Scholar
  13. 13.
    Arendse CJ, Knoesen D, Britton DT (2006) Thin Solid Films 501:92CrossRefGoogle Scholar
  14. 14.
    Beyer W, Wagner H (1985) J Non-Cryst Solids 77–78:857CrossRefGoogle Scholar
  15. 15.
    Brodsky MH, Cardona M, Cuomo JJ (1977) Phys Rev B 16:3556CrossRefGoogle Scholar
  16. 16.
    Shanks H, Fang CJ, Ley L, Cardona M, Desmond FJ, Kalbitzer S (1980) Phys Status Solidi B 100:43CrossRefGoogle Scholar
  17. 17.
    Brockhoff AM (2001) PhD thesis, Utrecht University, Utrecht, The NetherlandsGoogle Scholar
  18. 18.
    Beeman D, Tsu R, Thorpe MF (1985) Phys Rev B 32:874CrossRefGoogle Scholar
  19. 19.
    Denton RE, Campbell RD, Tomlin SG (1972) J Phys D 5:852CrossRefGoogle Scholar
  20. 20.
    Spinella C, Lombardo S, Priolo F (1998) J Appl Phys 84:5383CrossRefGoogle Scholar
  21. 21.
    Mahan AH, Williamson DL, Furtak TE (1997) In: Wagner S, Hack M, Schiff EA, Schropp REI, Shimizu I (eds) Amorphous and microcrystalline silicon technology, vol 467. Materials Research Society, PittsburghGoogle Scholar
  22. 22.
    Lucovsky G, Zing Z, Lu Z, Lee DR, Whitten JL (1995) J Non-Cryst Solids 182:90CrossRefGoogle Scholar
  23. 23.
    Tauc J (1972) In: Abeles F (ed) Optical properties of solids. North-Holland Publ, AmsterdamGoogle Scholar
  24. 24.
    Klazes RH, van den Broek MHLM, Bezemer J, Radelaar S (1982) Philos Mag B 45:377CrossRefGoogle Scholar
  25. 25.
    Müller G, Mannsperger H, Kalbitzer S (1986) Philos Mag B 53:257CrossRefGoogle Scholar
  26. 26.
    Street RA, Knights JC, Biegelsen D (1978) Phys Rev B 18:1880CrossRefGoogle Scholar
  27. 27.
    Rüther R, Livingston J (1994) Thin Solid Films 251:30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. J. Arendse
    • 1
  • G. F. Malgas
    • 2
    Email author
  • T. F. G. Muller
    • 1
  • B. A. van Heerden
    • 1
  • D. Knoesen
    • 1
  1. 1.Department of PhysicsUniversity of the Western CapeBellvilleSouth Africa
  2. 2.National Centre for Nano-Structured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations