Journal of Materials Science

, Volume 44, Issue 23, pp 6325–6332 | Cite as

Nanostructure characterization of polymer-stabilized gold nanoparticles and nanofilms derived from green synthesis

  • Iliana Medina-Ramírez
  • Maribel González-García
  • Jingbo Louise LiuEmail author


The fabrication and characterization of gold (Au) nanostructured materials draws significant attention because of their distinctive properties and their technological applications. The first objective of this study is to fabricate polymer-stabilized Au nanoparticles and nanofilms (PAN) through a cost effective and green synthetic methodology. In this study, the gold trication (Au3+) can be spontaneously converted into metallic gold atom using a non-toxic reductant (ascorbic acid). The ultrafine Au clusters were formed and stabilized through metallic bonds in the colloidal suspension, which was then deposited on a micro-glass or polymer-bead substrate to prepare thin films. It was found that ascorbic acid was the best reducing agent due to its rapid rate, spontaneity of reaction, and its non-toxic nature. In order to prevent aggregation of the nanoparticles, a dispersing agent (gum Arabic) was used. The second objective of this study was to analyze the PAN using a number of state-of-the-art instrumentation techniques and analytical approaches, such as X-ray powder diffraction (XRD), atomic force microscopy (AFM), scanning and transmission electron microscopy (SEM and TEM), ultraviolet–visible (UV–Vis) spectroscopy, and ZetaPALS. These techniques were applied to evaluate specific properties of the PAN, such as characterization of its crystalline phase, surface topology, characteristic plasmon, particle size distribution, and stability. From this study, it can be concluded that the ultrafine Au nanoparticles and uniform films were obtained using the green chemistry method. The ultrafine Au particles are highly stabilized and monodispersed as demonstrated by their high absolute value of zeta potential.


Atomic Force Microscopy Colloidal Suspension Energy Dispersive Spectrometer Metallic Gold Surface Plasmon Band 





Gum arabic




Polymer-stabilized Au nanoparticle and nanofilm


X-ray powder diffraction


Atomic force microscopy


Scanning electron microscopy


Transmission electron microscopy


X-ray energy dispersive spectroscopy


Ultraviolet visible spectroscopy



The Academia Mexicana de Ciencias (AMC) y Fundación México Estados Unidos para la Ciencia (FUMEC), and the College of Arts and Sciences at Texas A&M University-Kingsville (TAMUK), Research and Development Fund (RDF) are duly acknowledged for their financial assistance. The authors are also grateful for the technical support and facility access provided by the South Texas Environmental Institute, the Department of Chemistry at TAMUK, and the Microscope and Imaging Center and Materials Characterization Facility at Texas A&M University, College Station.


  1. 1.
    Sokolov K, Nida D, Descour M, Lacy A, Levy M, Hall B, Dharmawardhane S, Ellington A, Korgel B, Richards-Kortum R (2007) Adv Cancer Res 96:299CrossRefGoogle Scholar
  2. 2.
    Kelsall R, Hamley IW, Geoghegan M (2005) Nanoscale science and technology. Wiley, New JerseyGoogle Scholar
  3. 3.
    Drexler E, Peterson C, Pergamit G (1991) Unbounding the future: the nanotechnology revolution. William Morrow and Company, New YorkGoogle Scholar
  4. 4.
    Drexler KE (1990) Engines of creation: the coming era of nanotechnology. Bantam Dell Publishing Group Inc (Random House), New YorkGoogle Scholar
  5. 5.
    Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. Wiley, New JerseyGoogle Scholar
  6. 6.
    Wang ZL (2003) Nanowires and nanobelts materials, properties and devices nanowires and nanobelts of functional materials (I). Kluwer Academic Publishers, NorwellGoogle Scholar
  7. 7.
    Weiss PS, Lewis PA (2007) ACS Nano 1:145CrossRefGoogle Scholar
  8. 8.
    Vauthey S, Santoso S, Gong H, Watson N, Zhang S (2002) Biophysics 16:5355Google Scholar
  9. 9.
    Csáki A, Möller R, Straube W, Köhler JM, Fritzschea W (2001) Nucleic Acids Res 16:1Google Scholar
  10. 10.
    Garzoń IL, Artacho E, Beltrań MR, Garćia A, Junquera J, Michaelian K, Ordejoń P, Rovira C, Sanchez-Portaĺ D, Soler JM (2001) Nanotechnology 12:126CrossRefGoogle Scholar
  11. 11.
    Chen CS (2008) Nat Nanotechnol 3:13CrossRefGoogle Scholar
  12. 12.
    Li Z, Jin R, Mirkin CA, Letsinger RL (2002) Nucleic Acids Res 30:1558CrossRefGoogle Scholar
  13. 13.
    Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Science 312:1027CrossRefGoogle Scholar
  14. 14.
    Chen K, Adelstein SJ, Kassis AI (2004) J Mol Struct Theochem 711:49CrossRefGoogle Scholar
  15. 15.
    Glomm WR (2005) J Dispers Sci Technol 26:389CrossRefGoogle Scholar
  16. 16.
    Lévy R, Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Fernig DG (2004) J Am Chem Soc 126:10076CrossRefGoogle Scholar
  17. 17.
    Dougan JA, Karlsson C, Smith WE, Graham D (2007) Nucleic Acids Res 35:3668CrossRefGoogle Scholar
  18. 18.
    Yan JF, Liu J (2008) Nanomed Nanotechnol Biol Med 4:79CrossRefGoogle Scholar
  19. 19.
    Opdahl A, Petrovykh DY, Kimura-Suda H, Tarlov MJ, Whitman LJ (2007) PNAS 104:9CrossRefGoogle Scholar
  20. 20.
    Vo-Dinh T, Kasili P, Wabuyele M (2006) Nanomed Nanotechnol Biol Med 2:22CrossRefGoogle Scholar
  21. 21.
    Zhang S, Metelev V, Tabatadze D, Zamecnik PC, Bogdanov A Jr (2008) PNAS 105:4156CrossRefGoogle Scholar
  22. 22.
    Teicher BA (2002) Tumor models in cancer research (Cancer drug discovery and development). Humana Press Inc, New JerseyGoogle Scholar
  23. 23.
    Shacham R, Avnir D, Mandler D (1999) Adv Mater 11:384CrossRefGoogle Scholar
  24. 24.
    Fan H, Yang K, Boye DM, Sigmon T, Malloy KJ, Xu H, López GP, Brinker CJ (2004) Science 304:567CrossRefGoogle Scholar
  25. 25.
    Sánchez-Loredo MG, Robledo-Cabreraa A, Groteb M (2002) Materi Chem Phys 76:279CrossRefGoogle Scholar
  26. 26.
    Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  27. 27.
    Ciccolini LS, Ayazi Shamlou P, Titchener-Hooker NJ, Ward JM, Dunnill P (2000) Biotechnol Bioeng 60:768CrossRefGoogle Scholar
  28. 28.
    Weller MT (1994) The application and interpretation of powder X-ray diffraction data, in inorganic materials chemistry. Oxford University Press, New YorkGoogle Scholar
  29. 29.
    Garratt-Reed AJ, Bell DC (2003) Energy dispersive X-ray analysis in the electron microscope. BIOS Scientific Publisher Limited, OxfordGoogle Scholar
  30. 30.
    Tanev S, Pond J, Paddon P, Tuchin VV (2006) A finite-difference time-domain model of optical phase contrast microscope imaging (Optical waveguide sensing and imaging). Springer, NetherlandsGoogle Scholar
  31. 31.
    Stokes RJ, Macaskill A, Lundahl PJ, Smith WE, Faulds K, Graham D (2008) Small 3:1593CrossRefGoogle Scholar
  32. 32.
    Massa W (2004) Crystal structure determination. Springer, BerlinCrossRefGoogle Scholar
  33. 33.
    Kline R (2004) Principles and practice of structural equation modeling (Methodology in the social sciences). Guilford Publications Inc, New YorkGoogle Scholar
  34. 34.
    Inaga S, Osatake H, Tanaka K (1991) J Electron Microsc 40:181Google Scholar
  35. 35.
    Hobot J, Walker M, Newman G, Bowler P (2008) J Electron Microsc 57:67CrossRefGoogle Scholar
  36. 36.
    Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Appl Spectrosc 56:150CrossRefGoogle Scholar
  37. 37.
    Firkowska I, Giannona S, Rojas-Chapana JA, Luecke K, Brüstle O, Giersig M (2008) Biocompatible nanomaterials and nanodevices promising for biomedical applications, (Nanomaterials for application in medicine and biology). Springer, NetherlandsGoogle Scholar
  38. 38.
    Medina-Ramírez I, Bashir S, Luo Z, Liu J (2009) Colloids Surf B Biointerfaces 73:185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Iliana Medina-Ramírez
    • 1
  • Maribel González-García
    • 2
  • Jingbo Louise Liu
    • 2
    Email author
  1. 1.Department of ChemistryUniversidad Autónoma de AguascalientesAguascalientesMexico
  2. 2.Department of ChemistryTexas A&M University-KingsvilleKingsvilleUSA

Personalised recommendations