Journal of Materials Science

, Volume 45, Issue 1, pp 34–38 | Cite as

A novel chemical reduction route toward fabrication of Fe3O4 octahedrons and Fe tubes

  • DongEn ZhangEmail author
  • Wei Wu
  • ShanZhong Li
  • XiaoBo Zhang
  • GuiQuan Han
  • Ailing Ying
  • JunYan Gong
  • ZhiWei Tong


Novel Fe3O4 octahedrons and Fe microtubes were successfully prepared in different alkaline concentration solutions by the reduction of hematite (α-Fe2O3) with hydrazine hydrate. The as-prepared powders were characterized in detail by conventional techniques such as X-ray diffraction and field emission scanning electron microscopy. The role of alkaline concentration during the reaction process is discussed in detail. Compared to the reaction in a water system, the reaction in ethanol required less sodium hydroxide and smaller particles were obtained. In addition, the magnetic properties of the samples were characterized using a vibrating sample magnetometer.


Magnetite Hematite Hydrazine Hydrate Shape Anisotropy Magnetic Refrigeration 



This work was supported by a Grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS), the CREST program of the Japan Science and Technology Agency (JST), the National Natural Science Foundation of China (No. 50873042), and the Scientific Research Program of the HuaiHai Institute of Technology (KQ08023, Z08018). We are grateful to the young and middle-aged academic leaders of the “Blue and Green Blue Project” of the universities and colleges in Jiangsu Province. We are also grateful to the University of Science & Technology of China for assistance in XRD and SEM measurements.


  1. 1.
    Kroll E, Winnik FM, Ziolo RF (1996) Chem Mater 8:1594CrossRefGoogle Scholar
  2. 2.
    Ni Y, Ge X, Zhang Z, Ye Q (2002) Chem Mater 14:1048CrossRefGoogle Scholar
  3. 3.
    Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115CrossRefGoogle Scholar
  4. 4.
    Sheikh AD, Mathe VL (2008) J Mater Sci 43:2018. doi: CrossRefGoogle Scholar
  5. 5.
    Suslick KS, Fang M, Hyeon T (1996) J Am Chem Soc 118:11960CrossRefGoogle Scholar
  6. 6.
    Park SJ, Kim S, Lee S, Khim ZG, Char K, Hyeon T (2000) J Am Chem Soc 122:8581CrossRefGoogle Scholar
  7. 7.
    Chio CJ, Tolochko O, Kim BK (2002) Mater Lett 56:289CrossRefGoogle Scholar
  8. 8.
    Cui ZL, Dong LF, Hao CC (2000) Mater Sci Eng A 286:205CrossRefGoogle Scholar
  9. 9.
    Sun YP, Rollins HW, Gufuru R (1999) Chem Mater 11:7CrossRefGoogle Scholar
  10. 10.
    Nikel DE, Cin JL, Harriso SR, Nikle JA (1996) J Magn Magn Mater 155:67CrossRefGoogle Scholar
  11. 11.
    Xu J, Zhang W, Yang Z, Yang S (2008) Inorg Chem 47:699CrossRefGoogle Scholar
  12. 12.
    Vayssieres L, Rabenberg L, Manthiram A (2002) Nano Lett 12:1393CrossRefGoogle Scholar
  13. 13.
    Chen M, Tang B, Nikles DE (1998) IEEE Trans Magn 34:1141CrossRefGoogle Scholar
  14. 14.
    Su XB, Zheng HG, Yang ZP, Zhu YC, Pan AL (2003) J Mater Sci 38:4581. doi: CrossRefGoogle Scholar
  15. 15.
    Zhang DE, Ni XM, Zheng HG, Li Y, Zhang XJ, Yang ZP (2005) Mater Lett 59:2011CrossRefGoogle Scholar
  16. 16.
    Maillard M, Giorgio S, Pileni MP (2002) Adv Mater 14:1084CrossRefGoogle Scholar
  17. 17.
    Ni XM, Zhao QB, Zhang DE, Zhang XJ, Zheng HG (2007) J Phys Chem C 111:601CrossRefGoogle Scholar
  18. 18.
    Zhu Y, Zheng H, Yang Q, Pan A, Yang Z (2004) J Cryst Growth 260:427CrossRefGoogle Scholar
  19. 19.
    Ban I, Drofenik M, Makovec D (2008) J Magn Magn Mater 307:250CrossRefGoogle Scholar
  20. 20.
    Gates B, Yin Y, Xia Y (2000) J Am Chem Soc 122:12582CrossRefGoogle Scholar
  21. 21.
    Zhang DE, Ni XM, Zheng HH (2005) J Colloid Interface Sci 292:410CrossRefGoogle Scholar
  22. 22.
    Chen L, Yang WJ, Yang CZ (1997) J Mater Sci 32:3571. doi: CrossRefGoogle Scholar
  23. 23.
    Zheng H, Liang J, Zeng J, Qian Y (2001) Mater Res Bull 36:947CrossRefGoogle Scholar
  24. 24.
    Zheng H, Zeng J, Liang J (1999) Acta Metall Sinica 35:837Google Scholar
  25. 25.
    Wang ZL (2000) J Phys Chem B 104:1153CrossRefGoogle Scholar
  26. 26.
    Cheng Y, Zheng YH, Wang YS, Bao F, Qin Y (2005) J Solid State Chem 178:2394CrossRefGoogle Scholar
  27. 27.
    Liu Z, Li S, Yang Y, Hu Z, Peng S, Liang J, Qian Y (2003) New J Chem 27:1748CrossRefGoogle Scholar
  28. 28.
    Cao XB, Gu L, Zhuge LJ, Qian WH, Zhao C, Lan XM, Sheng WJ, Yao D (2007) Colloids Surf A Physicochem Eng Aspects 297:183CrossRefGoogle Scholar
  29. 29.
    Emin S, Sogoshi N, Nakabayashi S, Villeneuve M, Dushkin C (2009) J Photochem Photobiol A: Chem 207:173CrossRefGoogle Scholar
  30. 30.
    Wang J, Chen QW, Zeng C, Hou BY (2004) Adv Mater 16:137CrossRefGoogle Scholar
  31. 31.
    Wang J, Sun JJ, Sun Q, Chen QW (2003) Mater Res Bull 38:1113CrossRefGoogle Scholar
  32. 32.
    Zhao LJ, Zhang HJ, Xing Y, Song SY, Yu SY et al (2008) J Solid State Chem 181:245CrossRefGoogle Scholar
  33. 33.
    Seo WS, Jo HH, Lee K, Kim B, Oh SJ, Park T (2004) Angew Chem Int Ed 43:1115CrossRefGoogle Scholar
  34. 34.
    Vayssieres L, Rabenberg L, Manthiram A (2002) Nano Lett 2:1393CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • DongEn Zhang
    • 1
    • 3
    Email author
  • Wei Wu
    • 2
  • ShanZhong Li
    • 1
  • XiaoBo Zhang
    • 1
  • GuiQuan Han
    • 1
  • Ailing Ying
    • 1
  • JunYan Gong
    • 1
  • ZhiWei Tong
    • 1
    • 3
  1. 1.Department of Chemical EngineeringHuaiHai Institute of TechnologyLianyungangPeople’s Republic of China
  2. 2.Department of Electronics EngineeringSoutheast UniversityNanjingPeople’s Republic of China
  3. 3.SORST, Japan Science and Technology Agency (JST)Machida, TokyoJapan

Personalised recommendations