Journal of Materials Science

, Volume 44, Issue 22, pp 6187–6198 | Cite as

The variation in lateral and longitudinal stress gauge response within an RTM 6 epoxy resin under one-dimensional shock loading

  • G. J. Appleby-ThomasEmail author
  • P. J. Hazell
  • C. Stennett


The dynamic response of a commercially important epoxy resin (RTM 6) has been studied using plate impact experiments in the impact velocity regime of 80–960 m/s. Both longitudinal and lateral manganin stress gauges were employed to study the development of orthogonal components of stress both during and after shock arrival. In light of recent work raising doubts about the interpretation of lateral gauge data, lateral response within the RTM 6 resin was also used to investigate the physical phenomena being measured by the embedded lateral gauges. USuP and σXuP Hugoniot relationships were in good agreement with data for similar polymer materials from the literature. Derivation of shear strength behaviour both during and after shock arrival showed evidence of strengthening behind the shock front, attributed to compression of the cross-linked epoxy resin polymer chains. Comparison of the change in lateral stress behind the shock to the behaviour of an epoxy resin possessing a similar USuP Hugoniot from the literature showed a different response; likely attributable to enhanced cross-linking present in this second resin. This result suggests that the embedded lateral gauges were, at least in part, measuring a physical response behind the shock within the resin. A Hugoniot elastic limit of 0.88 ± 0.04 GPa was derived and found to be of the same order of magnitude as results found elsewhere for similar materials.


Shear Strength PMMA Incident Shock Longitudinal Stress Lateral Stress 



The authors wish to thank Mr Steven Mortimer of Hexcel, Duxford, UK, for supplying the cured resin samples. In addition, the authors gratefully acknowledge the invaluable aid of Mr Gary Cooper in carrying out this work.


  1. 1.
    Millett JCF, Bourne NK, Meziere YJE, Vignjevic R, Lukyanov A (2007) Compos Sci Technol 67:3253CrossRefGoogle Scholar
  2. 2.
    Ryan S, Schfer F, Guyot M, Hiermaier S, Lambert M (2008) Int J Impact Eng 35:1756CrossRefGoogle Scholar
  3. 3.
    Meyers MA (1994) Dynamic behavior of materials. Wiley, New YorkCrossRefGoogle Scholar
  4. 4.
    Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Int J Impact Eng 30:725CrossRefGoogle Scholar
  5. 5.
    Millett JCF, Bourne NK, Gray GT III, Cooper G (2001) In: Furnish MD, Thadani NN, Horie Y (eds) Shock compression of condensed matter CP620. American Institute of Physics, Melville, NY, pp 131–134Google Scholar
  6. 6.
    Barker LM, Hollenbach RE (1970) J Appl Phys 41(10):4208CrossRefGoogle Scholar
  7. 7.
    Millett JCF, Bourne NK (2004) J Phys D Appl Phys 37:2901CrossRefGoogle Scholar
  8. 8.
    Hazell PJ, Edwards MR, Longstaff H, Erskine J (2009) Int J Impact Eng 36:147CrossRefGoogle Scholar
  9. 9.
    Bourne NK, Millett JCF (2003) Proc R Soc Lond A 459:567CrossRefGoogle Scholar
  10. 10.
    Marsh SP (1980) LASL Shock Hugoniot Data. University of California Press, Ltd, Los AngelesGoogle Scholar
  11. 11.
    Gerlach R, Siviour CR, Petrinic N, Wiegand J (2008) Polymer 49:2728CrossRefGoogle Scholar
  12. 12.
    Hazell PJ, Stennett C, Cooper G (2009) Compos A 40:204CrossRefGoogle Scholar
  13. 13.
    Munson DE, May RP (1972) J Appl Phys 43(3):962CrossRefGoogle Scholar
  14. 14.
    Hazell PJ, Stennett C, Cooper G (2008) Polym Compos 29(10):1106CrossRefGoogle Scholar
  15. 15.
    Millett JCF, Bourne NK, Barnes NR (2002) J Appl Phys 92(11):6590CrossRefGoogle Scholar
  16. 16.
    Winter RE, Harris EJ (2008) J Phys D Appl Phys 41:035503CrossRefGoogle Scholar
  17. 17.
    Winter RE, Owen GD, Harris EJ (2008) J Phys D Appl Phys 41:202006CrossRefGoogle Scholar
  18. 18.
    Skordos AA, Karkanas PI, Partridge IK (2000) Meas Sci Technol 11:25CrossRefGoogle Scholar
  19. 19.
    Aduriz XA, Lupi C, Boyard N, Bailleul J-L, Leduc D, Sobotka V, Lefèvre N, Chapeleau X, Boisrobert C, Delaunay D (2007) Compos Sci Technol 67:3196CrossRefGoogle Scholar
  20. 20.
    HexFlow® RTM 6 180 °C epoxy system for Resin Transfer Moulding monocomponent system: Product Data. Hexcel Composites, Duxford UK:
  21. 21.
    Saunders KJ (1988) Organic polymer chemistry, 2nd edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  22. 22.
    Safety Data Sheet RTM6. Hexcel Composites (Duxford UK)Google Scholar
  23. 23.
    Bourne NK (2003) Meas Sci Technol 14:273CrossRefGoogle Scholar
  24. 24.
    Rosenburg Z, Partom Y (1985) J Appl Phys 58(8):3072CrossRefGoogle Scholar
  25. 25.
    Rosenburg Z, Brar NS (1995) J Appl Phys 77(4):1143Google Scholar
  26. 26.
    Millett JCF, Bourne NK, Rosenberg Z (1996) J Phys D Appl Phys 29:2466CrossRefGoogle Scholar
  27. 27.
    Appleby-Thomas GJ, Hazell PJ, Stennett C, Cooper G, Helaar K, Diederen AM (2009) J Appl Phys 106:064916-1-064916-9Google Scholar
  28. 28.
    Porter D, Gould PJ (2006) J Phys IV France 134:373CrossRefGoogle Scholar
  29. 29.
    Millett JCF, Bourne NK, Dandekar DP (2004) J Appl Phys 96(7):3727CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. J. Appleby-Thomas
    • 1
    Email author
  • P. J. Hazell
    • 1
  • C. Stennett
    • 1
  1. 1.Cranfield Defence and SecurityCranfield UniversitySwindonUK

Personalised recommendations