Wetting and interfacial behavior of Ni–Si alloy on different substrates
- 310 Downloads
- 23 Citations
Abstract
Wetting of molten Ni–56 at.% Si alloy on different substrates (SiC ceramic, Ni- and Co-based superalloys, Kovar, and Mo) are performed under different experimental conditions by the sessile drop technique. Temperature, atmosphere, and substrate composition play the key roles in determining the wettability, the spreading characteristics, and the interfacial morphology of the final interfaces. The non-reactive wetting characteristics in Ni–Si/SiC system are confirmed, with a spreading rate increasing with temperature increasing. In the Ni–Si/metal systems the spreading process is determined by the competition between spreading along the substrate surface and the interfacial interactions. Excellent wettability and fast spreading are found in the Ni–Si/Co-based superalloy, Ni–Si/Kovar, and Ni–Si/Mo systems at both the temperatures (1100 and 1200 °C). These results can be used as a reference guide for joining SiC to these metallic components, or to itself, using the Ni–Si alloy as filler metal.
Keywords
Contact Angle Energy Dispersive Spectroscopy Analysis Triple Line Apparent Contact Angle Fast SpreadingNotes
Acknowledgements
The authors wish to thank Mr. Carlo Bottino (IENI) for his skilful and passionate work with SEM and EDS and Mr. Francesco Mocellin (IENI) for technical support.
References
- 1.Eustathopoulos N (2005) Curr Opin Solid State Mater Sci 9:152CrossRefGoogle Scholar
- 2.Naidich Y (2005) Curr Opin Solid State Mater Sci 9:161CrossRefGoogle Scholar
- 3.Saiz E, Tomsia AP (2005) Curr Opin Solid State Mater Sci 9:167CrossRefGoogle Scholar
- 4.Sobczak N, Singh M, Asthana R (2005) Curr Opin Solid State Mater Sci 9:241CrossRefGoogle Scholar
- 5.Saiz E, Tomsia AP (2004) Nature Mater 3:903CrossRefGoogle Scholar
- 6.Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperature. Elsevier, AmsterdamGoogle Scholar
- 7.Passerone A, Muolo ML, Valenza F, Monteverde F, Sobczak N (2009) Acta Mater 75:356CrossRefGoogle Scholar
- 8.Muolo ML, Ferrera E, Novakovic R, Passerone A (2003) Scr Mater 48:191CrossRefGoogle Scholar
- 9.Passerone A, Muolo ML, Passerone D (2006) J Mater Sci 41:5088. doi: https://doi.org/10.1007/s10853-006-0442-8 CrossRefGoogle Scholar
- 10.Naidich YV, Zhuravlev VS, Gab II, Kostyuk BD, Krasovskyy VP, Adamovskyy AA, Taranets NY (2008) J Eur Ceram Soc 28:717CrossRefGoogle Scholar
- 11.Bougiouri V, Voytovych R, Dezellus O, Eustathopoulos N (2007) J Mater Sci 42:2016. doi: https://doi.org/10.1007/s10853-006-1483-8 CrossRefGoogle Scholar
- 12.Aluru R, Gale WF, Chitti SV, Sofyan N, Love RD, Fergus JW (2008) Mater Sci Technol 24:517CrossRefGoogle Scholar
- 13.Ma GF, Zhang HL, Zhang HF, Li H, Hu ZQ (2008) J Alloys Compd 464:248CrossRefGoogle Scholar
- 14.Xu J, Liu X, Bright MA, Hemrick JG, Sikka V, Barbero E (2008) Metall Mater Trans A 39A:1382CrossRefGoogle Scholar
- 15.Brochu M, Pugh M, Drew RAL (2004) Intermetallics 12:289CrossRefGoogle Scholar
- 16.Gauffier A, Saiz E, Tomsia AP, Hou PY (2007) J Mater Sci 46:9524. doi: https://doi.org/10.1007/s10853-007-2093-9 CrossRefGoogle Scholar
- 17.Xiong HP, Mao W, Xie YH, Chen B, Guo WL, Li XH, Cheng YY (2007) J Mater Res 22:2727CrossRefGoogle Scholar
- 18.Xiong HP, Mao W, Xie YH, Chen B, Guo WL, Li XH, Cheng YY (2007) Mater Lett 61:4662CrossRefGoogle Scholar
- 19.Prakash P, Mohandas T, Raju PD (2005) Scr Mater 52:1169CrossRefGoogle Scholar
- 20.Chen B, Xiong HP, Mao W, Guo WL, Cheng YY, Li XH (2007) Acta Metall Sin 43:1181Google Scholar
- 21.Liu GW, Qiao GJ, Wang HJ, Yang JF, Lu TJ (2008) J Eur Ceram Soc 28:2701CrossRefGoogle Scholar
- 22.Liu GW, Li W, Qiao GJ, Wang HJ, Yang JF, Lu TJ (2009) J Alloys Compd 470:163CrossRefGoogle Scholar
- 23.Zhang CG, Qiao GJ, Jin ZH (2002) J Eur Ceram Soc 22:2181CrossRefGoogle Scholar
- 24.Qiao GJ, Zhang CG, Jin ZH (2003) Ceram Int 29:7CrossRefGoogle Scholar
- 25.Hattali ML, Valette S, Ropital F, Mesrati N, Treheux D (2009) J Mater Sci 44:3198. doi: https://doi.org/10.1007/s10853-009-3426-7 CrossRefGoogle Scholar
- 26.Li SJ, Zhou Y, Duan HP, Qiu JH, Zhang Y (2003) J Mater Sci 38:4065. doi: https://doi.org/10.1023/A:1026135220737 CrossRefGoogle Scholar
- 27.Shalz ML, Dalgleish BJ, Tomsia AP, Glaeser AM (1993) J Mater Sci 28:1673. doi: https://doi.org/10.1007/BF00363367 CrossRefGoogle Scholar
- 28.Tan L, Sridharan K, Allen TR (2007) J Nucl Mater 371:171CrossRefGoogle Scholar
- 29.Kumar A, Rajkumar KV, Jayakumar T, Raj B, Mishra B (2006) J Nucl Mater 350:284CrossRefGoogle Scholar
- 30.Jones RH, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Riccardi B, Snead LL, Weber WJ (2002) J Nucl Mater 307:1057CrossRefGoogle Scholar
- 31.Riccardi B, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Jones RH, Snead LL (2004) J Nucl Mater 329:56CrossRefGoogle Scholar
- 32.Ferraris M, Salvo M, Casalegno V, Ciampichetti A, Smeacetto F, Zucchetti M (2008) J Nucl Mater 375:410CrossRefGoogle Scholar
- 33.Mcdermid JR, Drew RAL (1991) J Am Ceram Soc 74:1855CrossRefGoogle Scholar
- 34.Koltsov A, Hodaj F, Eustathopoulos N (2008) Mater Sci Eng A 495:259CrossRefGoogle Scholar
- 35.Riccardi B, Nannetti CA, Woltersdorf J, Pippel E, Petrisor T (2004) Int J Mater Prod Technol 20:440CrossRefGoogle Scholar
- 36.Riccardi B, Nannetti CA, Woltersdorf J, Pippel E, Petrisor T (2002) J Mater Sci 37:5029. doi: https://doi.org/10.1023/A:1021087632155 CrossRefGoogle Scholar
- 37.Riccardi B, Nannetti CA, Petrisor T, Woltersdorf J, Pippel E, Libera S, Pillonni L (2004) J Nucl Mater 329:562CrossRefGoogle Scholar
- 38.Riccardi B, Nannetti CA, Petrisor T, Sacchetti M (2004) J Nucl Mater 307:1237Google Scholar
- 39.Li JK, Liu L, Wu YT, Zhang WL, Hu WB (2008) Mater Lett 62:3135CrossRefGoogle Scholar
- 40.Tsoga A, Ladas S, Nikolopoulos P (1997) Acta Mater 45:3515CrossRefGoogle Scholar
- 41.Rado C, Kalogeropoulou S, Eustathopoulos N (1999) Acta Mater 47:461CrossRefGoogle Scholar
- 42.Rado C, Kalogeropoulou S, Eustathopoulos N (2000) Scr Mater 42:203CrossRefGoogle Scholar
- 43.Mailliart O, Hodaj F, Chaumat V, Eustathopoulos N (2008) Mater Sci Eng A 495:174CrossRefGoogle Scholar
- 44.Kalogeropoulou S, Baud L, Eustathopoulos N (1995) Acta Metall Mater 43:907CrossRefGoogle Scholar
- 45.Drevet B, Kalogeropoulou S, Eustathopoulos N (1993) Acta Mater 41:3119CrossRefGoogle Scholar
- 46.Naidich YV, Zhuravlev V, Krasovskaya N (1998) Mater Sci Eng A 245:293CrossRefGoogle Scholar
- 47.Rado C, Kalogeropoulou S, Eustathopoulos N (2000) Mater Sci Eng A 276:195CrossRefGoogle Scholar
- 48.Li JG (1994) Mater Lett 18:291CrossRefGoogle Scholar
- 49.Gasse A, Chaumat G, Rado C, Eustathopoulos N (1996) J Mater Sci Lett 15:1630Google Scholar
- 50.Landry K, Rado C, Eustathopoulos N (1996) Metall Mater Trans A 27:3181CrossRefGoogle Scholar
- 51.Rado C, Eustathopoulos N (2004) Interface Sci 12:85CrossRefGoogle Scholar
- 52.Leon CA, Mendoza-Suarez G, Drew RAL (2006) J Mater Sci 41:5081. doi: https://doi.org/10.1007/s10853-006-0443-7 CrossRefGoogle Scholar
- 53.Liu GW, Qiao GJ, Valenza F, Muolo ML, Passerone A (2009) Mater Sci Eng A (submitted)Google Scholar
- 54.Liggieri L, Passerone A (1989) High Temp Technol 7:82CrossRefGoogle Scholar
- 55.Passerone A, Ricci E (1998) In: Möbius D, Miller R (eds) Drops and bubbles in interfacial research. Elsevier, AmsterdamGoogle Scholar
- 56.Defay R, Prigogine I, Bellemans A, Everett DH (1966) Surface tension and adsorption. Logmans, LondonGoogle Scholar