Journal of Materials Science

, Volume 44, Issue 22, pp 5990–5997 | Cite as

Wetting and interfacial behavior of Ni–Si alloy on different substrates

  • G. W. LiuEmail author
  • F. Valenza
  • M. L. Muolo
  • G. J. Qiao
  • A. Passerone
Interface Science


Wetting of molten Ni–56 at.% Si alloy on different substrates (SiC ceramic, Ni- and Co-based superalloys, Kovar, and Mo) are performed under different experimental conditions by the sessile drop technique. Temperature, atmosphere, and substrate composition play the key roles in determining the wettability, the spreading characteristics, and the interfacial morphology of the final interfaces. The non-reactive wetting characteristics in Ni–Si/SiC system are confirmed, with a spreading rate increasing with temperature increasing. In the Ni–Si/metal systems the spreading process is determined by the competition between spreading along the substrate surface and the interfacial interactions. Excellent wettability and fast spreading are found in the Ni–Si/Co-based superalloy, Ni–Si/Kovar, and Ni–Si/Mo systems at both the temperatures (1100 and 1200 °C). These results can be used as a reference guide for joining SiC to these metallic components, or to itself, using the Ni–Si alloy as filler metal.


Contact Angle Energy Dispersive Spectroscopy Analysis Triple Line Apparent Contact Angle Fast Spreading 



The authors wish to thank Mr. Carlo Bottino (IENI) for his skilful and passionate work with SEM and EDS and Mr. Francesco Mocellin (IENI) for technical support.


  1. 1.
    Eustathopoulos N (2005) Curr Opin Solid State Mater Sci 9:152CrossRefGoogle Scholar
  2. 2.
    Naidich Y (2005) Curr Opin Solid State Mater Sci 9:161CrossRefGoogle Scholar
  3. 3.
    Saiz E, Tomsia AP (2005) Curr Opin Solid State Mater Sci 9:167CrossRefGoogle Scholar
  4. 4.
    Sobczak N, Singh M, Asthana R (2005) Curr Opin Solid State Mater Sci 9:241CrossRefGoogle Scholar
  5. 5.
    Saiz E, Tomsia AP (2004) Nature Mater 3:903CrossRefGoogle Scholar
  6. 6.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperature. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Passerone A, Muolo ML, Valenza F, Monteverde F, Sobczak N (2009) Acta Mater 75:356CrossRefGoogle Scholar
  8. 8.
    Muolo ML, Ferrera E, Novakovic R, Passerone A (2003) Scr Mater 48:191CrossRefGoogle Scholar
  9. 9.
    Passerone A, Muolo ML, Passerone D (2006) J Mater Sci 41:5088. doi: CrossRefGoogle Scholar
  10. 10.
    Naidich YV, Zhuravlev VS, Gab II, Kostyuk BD, Krasovskyy VP, Adamovskyy AA, Taranets NY (2008) J Eur Ceram Soc 28:717CrossRefGoogle Scholar
  11. 11.
    Bougiouri V, Voytovych R, Dezellus O, Eustathopoulos N (2007) J Mater Sci 42:2016. doi: CrossRefGoogle Scholar
  12. 12.
    Aluru R, Gale WF, Chitti SV, Sofyan N, Love RD, Fergus JW (2008) Mater Sci Technol 24:517CrossRefGoogle Scholar
  13. 13.
    Ma GF, Zhang HL, Zhang HF, Li H, Hu ZQ (2008) J Alloys Compd 464:248CrossRefGoogle Scholar
  14. 14.
    Xu J, Liu X, Bright MA, Hemrick JG, Sikka V, Barbero E (2008) Metall Mater Trans A 39A:1382CrossRefGoogle Scholar
  15. 15.
    Brochu M, Pugh M, Drew RAL (2004) Intermetallics 12:289CrossRefGoogle Scholar
  16. 16.
    Gauffier A, Saiz E, Tomsia AP, Hou PY (2007) J Mater Sci 46:9524. doi: CrossRefGoogle Scholar
  17. 17.
    Xiong HP, Mao W, Xie YH, Chen B, Guo WL, Li XH, Cheng YY (2007) J Mater Res 22:2727CrossRefGoogle Scholar
  18. 18.
    Xiong HP, Mao W, Xie YH, Chen B, Guo WL, Li XH, Cheng YY (2007) Mater Lett 61:4662CrossRefGoogle Scholar
  19. 19.
    Prakash P, Mohandas T, Raju PD (2005) Scr Mater 52:1169CrossRefGoogle Scholar
  20. 20.
    Chen B, Xiong HP, Mao W, Guo WL, Cheng YY, Li XH (2007) Acta Metall Sin 43:1181Google Scholar
  21. 21.
    Liu GW, Qiao GJ, Wang HJ, Yang JF, Lu TJ (2008) J Eur Ceram Soc 28:2701CrossRefGoogle Scholar
  22. 22.
    Liu GW, Li W, Qiao GJ, Wang HJ, Yang JF, Lu TJ (2009) J Alloys Compd 470:163CrossRefGoogle Scholar
  23. 23.
    Zhang CG, Qiao GJ, Jin ZH (2002) J Eur Ceram Soc 22:2181CrossRefGoogle Scholar
  24. 24.
    Qiao GJ, Zhang CG, Jin ZH (2003) Ceram Int 29:7CrossRefGoogle Scholar
  25. 25.
    Hattali ML, Valette S, Ropital F, Mesrati N, Treheux D (2009) J Mater Sci 44:3198. doi: CrossRefGoogle Scholar
  26. 26.
    Li SJ, Zhou Y, Duan HP, Qiu JH, Zhang Y (2003) J Mater Sci 38:4065. doi: CrossRefGoogle Scholar
  27. 27.
    Shalz ML, Dalgleish BJ, Tomsia AP, Glaeser AM (1993) J Mater Sci 28:1673. doi: CrossRefGoogle Scholar
  28. 28.
    Tan L, Sridharan K, Allen TR (2007) J Nucl Mater 371:171CrossRefGoogle Scholar
  29. 29.
    Kumar A, Rajkumar KV, Jayakumar T, Raj B, Mishra B (2006) J Nucl Mater 350:284CrossRefGoogle Scholar
  30. 30.
    Jones RH, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Riccardi B, Snead LL, Weber WJ (2002) J Nucl Mater 307:1057CrossRefGoogle Scholar
  31. 31.
    Riccardi B, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Jones RH, Snead LL (2004) J Nucl Mater 329:56CrossRefGoogle Scholar
  32. 32.
    Ferraris M, Salvo M, Casalegno V, Ciampichetti A, Smeacetto F, Zucchetti M (2008) J Nucl Mater 375:410CrossRefGoogle Scholar
  33. 33.
    Mcdermid JR, Drew RAL (1991) J Am Ceram Soc 74:1855CrossRefGoogle Scholar
  34. 34.
    Koltsov A, Hodaj F, Eustathopoulos N (2008) Mater Sci Eng A 495:259CrossRefGoogle Scholar
  35. 35.
    Riccardi B, Nannetti CA, Woltersdorf J, Pippel E, Petrisor T (2004) Int J Mater Prod Technol 20:440CrossRefGoogle Scholar
  36. 36.
    Riccardi B, Nannetti CA, Woltersdorf J, Pippel E, Petrisor T (2002) J Mater Sci 37:5029. doi: CrossRefGoogle Scholar
  37. 37.
    Riccardi B, Nannetti CA, Petrisor T, Woltersdorf J, Pippel E, Libera S, Pillonni L (2004) J Nucl Mater 329:562CrossRefGoogle Scholar
  38. 38.
    Riccardi B, Nannetti CA, Petrisor T, Sacchetti M (2004) J Nucl Mater 307:1237Google Scholar
  39. 39.
    Li JK, Liu L, Wu YT, Zhang WL, Hu WB (2008) Mater Lett 62:3135CrossRefGoogle Scholar
  40. 40.
    Tsoga A, Ladas S, Nikolopoulos P (1997) Acta Mater 45:3515CrossRefGoogle Scholar
  41. 41.
    Rado C, Kalogeropoulou S, Eustathopoulos N (1999) Acta Mater 47:461CrossRefGoogle Scholar
  42. 42.
    Rado C, Kalogeropoulou S, Eustathopoulos N (2000) Scr Mater 42:203CrossRefGoogle Scholar
  43. 43.
    Mailliart O, Hodaj F, Chaumat V, Eustathopoulos N (2008) Mater Sci Eng A 495:174CrossRefGoogle Scholar
  44. 44.
    Kalogeropoulou S, Baud L, Eustathopoulos N (1995) Acta Metall Mater 43:907CrossRefGoogle Scholar
  45. 45.
    Drevet B, Kalogeropoulou S, Eustathopoulos N (1993) Acta Mater 41:3119CrossRefGoogle Scholar
  46. 46.
    Naidich YV, Zhuravlev V, Krasovskaya N (1998) Mater Sci Eng A 245:293CrossRefGoogle Scholar
  47. 47.
    Rado C, Kalogeropoulou S, Eustathopoulos N (2000) Mater Sci Eng A 276:195CrossRefGoogle Scholar
  48. 48.
    Li JG (1994) Mater Lett 18:291CrossRefGoogle Scholar
  49. 49.
    Gasse A, Chaumat G, Rado C, Eustathopoulos N (1996) J Mater Sci Lett 15:1630Google Scholar
  50. 50.
    Landry K, Rado C, Eustathopoulos N (1996) Metall Mater Trans A 27:3181CrossRefGoogle Scholar
  51. 51.
    Rado C, Eustathopoulos N (2004) Interface Sci 12:85CrossRefGoogle Scholar
  52. 52.
    Leon CA, Mendoza-Suarez G, Drew RAL (2006) J Mater Sci 41:5081. doi: CrossRefGoogle Scholar
  53. 53.
    Liu GW, Qiao GJ, Valenza F, Muolo ML, Passerone A (2009) Mater Sci Eng A (submitted)Google Scholar
  54. 54.
    Liggieri L, Passerone A (1989) High Temp Technol 7:82CrossRefGoogle Scholar
  55. 55.
    Passerone A, Ricci E (1998) In: Möbius D, Miller R (eds) Drops and bubbles in interfacial research. Elsevier, AmsterdamGoogle Scholar
  56. 56.
    Defay R, Prigogine I, Bellemans A, Everett DH (1966) Surface tension and adsorption. Logmans, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. W. Liu
    • 1
    • 2
    Email author
  • F. Valenza
    • 1
  • M. L. Muolo
    • 1
  • G. J. Qiao
    • 2
  • A. Passerone
    • 1
  1. 1.Institute for Energetics and Interphases, IENI-CNRGenoaItaly
  2. 2.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations