Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 6182–6186 | Cite as

Plastic anisotropy and strain-hardening behavior of Mg–6%Li–1%Zn alloy thin sheet at elevated temperatures

  • Horng-Yu WuEmail author
  • Geng-Zhong Zhou
Article

Abstract

An Mg–Li–Zn (designated as LAZ61) alloy containing about 6 wt% of Li has been prepared by melting and solidification in a carbon steel crucible, and extruded at a billet preheating temperature of 200 °C. The extruded plate was then cold-rolled to a final thickness of 0.6 mm with a total reduction of approximately 82%. Tensile tests were carried out in the rolling and transverse directions and at various temperatures to explore the effects of anisotropy and temperature on mechanical properties and strain-hardening behavior. Kocks–Mecking type plots were used to illustrate different stages of strain hardening. Anisotropic behavior of LZ61 sheet were observed in the mechanical properties at all test temperatures due to the development of texture in α phase during cold-rolling and a low content of BCC β phase. The cold-rolled LZ61 alloy sheet showed stage II and stage III strain-hardening behavior at test temperatures of room temperature and 100 °C. The specimens tested at 200 °C did not show stage II strain hardening. Higher initial strain-hardening rates were observed in the transverse direction as a result of the cold-rolled fibrous structure providing more strong barriers to the dislocation movement.

Keywords

Basal Slip Initial Strain Rate Solid Solution Hardening Strong Basal Texture Alloy Thin Sheet 

Notes

Acknowledgements

This work was conducted through grants from National Science Council under the contract No. NSC 97-2221-E-216-010 and Chung-hua University under the contract No. CHU NSC 97-2221-E-216-010.

References

  1. 1.
    Chen XH, Lu L (2007) Scr Mater 57:133CrossRefGoogle Scholar
  2. 2.
    Ravi Kumar D, Swaminathan K (1999) Mater Sci Technol 15:1241CrossRefGoogle Scholar
  3. 3.
    Mielnik EM (1993) Metalworking science and engineering. McGraw-Hill, Inc, New YorkGoogle Scholar
  4. 4.
    Marciniak Z, Kuczynski K, Pokora T (1973) Int J Mech Sci 15:789CrossRefGoogle Scholar
  5. 5.
    Kocks UF, Mecking H (2003) Prog Mater Sci 48:171CrossRefGoogle Scholar
  6. 6.
    Kuhlmann-Wilsdorf D (2004) Metall Mater Trans A 35:369CrossRefGoogle Scholar
  7. 7.
    Kocks UF (1970) Metall Trans 1:1121CrossRefGoogle Scholar
  8. 8.
    Mecking H, Kocks UF (1981) Acta Metall 29:1865CrossRefGoogle Scholar
  9. 9.
    Lavrentev FF (1980) Mater Sci Eng 46:191CrossRefGoogle Scholar
  10. 10.
    Lavrentev FF, Pokhil YA (1975) Mater Sci Eng 18:261CrossRefGoogle Scholar
  11. 11.
    Afrin N, Chen DL, Cao X, Jahazi M (2007) Scr Mater 57:1004CrossRefGoogle Scholar
  12. 12.
    Cáceres CH, Blake AH (2007) Mater Sci Eng A 462:193CrossRefGoogle Scholar
  13. 13.
    del Valle JA, Carreno F, Ruano OA (2006) Acta Mater 54:4247CrossRefGoogle Scholar
  14. 14.
    Lukác P, Trojanová Z (2007) Mater Sci Eng A 462:23CrossRefGoogle Scholar
  15. 15.
    Máthis K, Trojanová Z, Lukác P, Cáceres CH, Lendvai J (2004) J Alloys Compd 378:176CrossRefGoogle Scholar
  16. 16.
    Trojanová Z, Lukác P (2005) J Mater Process Technol 162–163:416CrossRefGoogle Scholar
  17. 17.
    Nayeb-Hashemi AA, Clark JB, Pelton AD (1984) Bull Alloy Phase Diagr 5:365CrossRefGoogle Scholar
  18. 18.
    Herbstein FH, Averbach BL (1956) Acta Metall 4:407CrossRefGoogle Scholar
  19. 19.
    Trojanová Z, Drozd Z, Lukáč P, Chmelík F (2005) Mater Sci Eng A 410–411:148CrossRefGoogle Scholar
  20. 20.
    Agnew SR, Horton JA, Yoo MH (2002) Metall Mater Trans A 33:851CrossRefGoogle Scholar
  21. 21.
    Takuda H, Matsusaka H, Kikuchi S, Kubota K (2002) J Mater Sci 37:51. doi: https://doi.org/10.1023/A:1013133521947 CrossRefGoogle Scholar
  22. 22.
    Takuda H, Enami T, Kubota K, Hatta N (1999) Mater Sci Eng A 271:251CrossRefGoogle Scholar
  23. 23.
    Drozd Z, Trojanová Z, Kúdela S (2004) J Alloys Comp 378:192CrossRefGoogle Scholar
  24. 24.
    Kamado S, Kojima Y (1998) Metall Sci Technol 16:45Google Scholar
  25. 25.
    Agnew SR, Yoo MH, Tomé N (2001) Acta Mater 49:4277CrossRefGoogle Scholar
  26. 26.
    Narayanasamy R, Sathiya Narayanan C (2005) Mater Sci Eng A 399:292CrossRefGoogle Scholar
  27. 27.
    Yukutake E, Kaneko J, Sugamata M (2003) Mater Trans 44:452CrossRefGoogle Scholar
  28. 28.
    Styczynski A, Hartig C, Bohlen J, Letzig D (2004) Scr Mater 50:943CrossRefGoogle Scholar
  29. 29.
    Agnew SR, Duygulu Ö (2005) Int J Plast 21:1161CrossRefGoogle Scholar
  30. 30.
    Koike J, Ohyama R (2005) Acta Mater 53:1963CrossRefGoogle Scholar
  31. 31.
    Lou XY, Li M, Boger RK, Agnew SR, Wagoner RH (2007) Int J Plast 23:44CrossRefGoogle Scholar
  32. 32.
    Luo J, Mei Z, Tian W, Wang Z (2006) Mater Sci Eng A 441:282CrossRefGoogle Scholar
  33. 33.
    Lukáč P, Balík J (1994) Key Eng Mater 97–98:307Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringChung-hua UniversityHsinchuTaiwan, ROC

Personalised recommendations