Journal of Materials Science

, Volume 44, Issue 23, pp 6258–6272 | Cite as

Assessment of EFM as a new nondestructive technique for monitoring the corrosion inhibition of low chromium alloy steel in 0.5 M HCl by tyrosine

  • Mohammed A. AminEmail author
  • Sayed S. Abd El Rehim
  • M. M. El-Naggar
  • Hesham T. M. Abdel-Fatah


Electrochemical frequency modulation (EFM), a nondestructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is applied here to investigate the inhibition performance of tyrosine (Tyr) toward corrosion of low chromium alloy steel in 0.50 M HCl. Measurements were conducted under various experimental conditions in the range of temperature (20–60 °C). Results obtained from EFM were compared with other traditional corrosion monitoring techniques, namely Tafel extrapolation, impedance, and weight loss. Polarization measurements showed that Tyr acted as a mixed-type inhibitor with cathodic predominance. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protected the metal against corrosive agents. Energy dispersive X-ray spectroscopy and scanning electron microscopy examinations of the electrode surface confirmed the existence of such an adsorbed film. The inhibition efficiency increased with increase in Tyr concentration, while it decreased with solution temperature. The adsorptive behavior of Tyr on the electrode surface followed Temkin-type isotherm. Thermodynamic functions for the adsorption process were determined. The data obtained from the different methods were in good agreements, which indicated that the EFM technique was valid for monitoring the corrosion inhibition under the studied conditions.


Corrosion Rate Inhibition Efficiency Constant Phase Element Corrosion Current Density Hydrogen Evolution Reaction 


  1. 1.
    Theus GS, Daniel PL (1983) In: Proceedings of the eighth international Brown Boveri symposium, Baden, Switzerland, p 185Google Scholar
  2. 2.
    NACE Publication (1982) Corrosion testing of chemical cleaning solvents, vol 21 Materials performance, 3M, p 48Google Scholar
  3. 3.
    Rothwell AN (1992) J Corros Prev Contr 39:113Google Scholar
  4. 4.
    Mann GMW (1976) High temperature high pressure electrochemistry in aqueous solutions. NACE-4, Houston, p 34Google Scholar
  5. 5.
    Ghanem WA, Bayyoumi FM, Ateya BG (1996) Corros Sci 38:1171CrossRefGoogle Scholar
  6. 6.
    Majnouni MD, Jaffer AE (2003) In: Chemical cleaning a boiler—an overview, International water conference, paper no IWC-03-34, PittsburghGoogle Scholar
  7. 7.
    Port RD, Herro HM (1991) The Nalco guide to boiler failure analysis. McGraw-Hill, New YorkGoogle Scholar
  8. 8.
    Arwood KI, Hale GL (1971) In: A method for determining need for chemical cleaning of high pressure boilers, American power conference, Chicago, vol 33, p 710Google Scholar
  9. 9.
    Hargrave RE (1994) Mat Perform 33:51Google Scholar
  10. 10.
    Natarajan S, Babu SPK (2006) Mater Sci Eng A432:47CrossRefGoogle Scholar
  11. 11.
    Natarajn S, Sivan V (2003) Corros Prev Cont 50:7Google Scholar
  12. 12.
    Sathiyanarayanan S, Jeyaprabha C, Muralidharan S, Venkatachari G (2006) Appl Surf Sci 252:8107CrossRefGoogle Scholar
  13. 13.
    Awad HS, Abdel Gawad S (2005) Anti-Corros Meth Mater 52:328CrossRefGoogle Scholar
  14. 14.
    Thomas JGN (1980) In: Proc 5th European symposium on corrosion inhibitors, Ann Univ Ferrara, NS, Sez V, p 453Google Scholar
  15. 15.
    Behpour M, Ghoreishi SM, Gandomi-Niasar A (2009) J Mater Sci 44:2444. doi: CrossRefGoogle Scholar
  16. 16.
    Balaji S, Upadhyaya A (2009) J Mater Sci 44:2310. doi: CrossRefGoogle Scholar
  17. 17.
    Sundararajan G, Phani PS, Jyothirmayi A (2009) J Mater Sci 44:2320. doi: CrossRefGoogle Scholar
  18. 18.
    Rao VS, Singhal LK (2009) J Mater Sci 44:2327. doi: CrossRefGoogle Scholar
  19. 19.
    Okayasu M, Sato K, Okada K et al (2009) J Mater Sci 44:306. doi: CrossRefGoogle Scholar
  20. 20.
    Gabriele R (2002) Corros Rev 20:509Google Scholar
  21. 21.
    Lebrini M, Traisnel M, Lagrenee M, Mernari B, Bentiss F (2008) Corros Sci 50:473CrossRefGoogle Scholar
  22. 22.
    Oguzie EE, Li Y, Wang FH (2007) J Colloid Interf Sci 310:90CrossRefGoogle Scholar
  23. 23.
    Aksut AA, Onal NA (1995) Bull Electrochem 11:513Google Scholar
  24. 24.
    Kalota DJ, De S (1994) Corrosion 50:138CrossRefGoogle Scholar
  25. 25.
    Madkour L, Ghoneim M (1997) Bull Electrochem 13:1Google Scholar
  26. 26.
    Gomma GK (1998) Bull Electrochem 12:456Google Scholar
  27. 27.
    Morad MS, Hermas AA, Abdel-Aal MS (2002) J Chem Technol Biotechnol 77:486CrossRefGoogle Scholar
  28. 28.
    Ashassi-Sorkhabi H, Ghasemi Z, Seifzadah D (2005) Appl Surf Sci 249:408CrossRefGoogle Scholar
  29. 29.
    Amin MA, Abd El Rehim SS, Abdel-Fatah HTM (2009) Corros Sci 51:882CrossRefGoogle Scholar
  30. 30.
    Abdel-Rehim SS, Khaled KF, Abdel-Shafi NS (2006) Electrochim Acta 51:3267CrossRefGoogle Scholar
  31. 31.
    Bosch RW, Hubrecht J, Bogaerts WF, Syrett BC (2001) Corrosion 57:60CrossRefGoogle Scholar
  32. 32.
    Bosch RW, Bogaerts WF (1996) Corrosion 52:204CrossRefGoogle Scholar
  33. 33.
    Kus E, Mansfeld F (2006) Corros Sci 48:965CrossRefGoogle Scholar
  34. 34.
    Han L, Song S (2008) Corros Sci 50:1551CrossRefGoogle Scholar
  35. 35.
    Abdallah M, Helal EA, Fouda AS (2006) Corros Sci 48:1639CrossRefGoogle Scholar
  36. 36.
    Zhao T, Mu G (1999) Corros Sci 41:1937CrossRefGoogle Scholar
  37. 37.
    Abd El-Rehim SS, Hassan HH, Amin MA (2001) Mater Chem Phys 70:64CrossRefGoogle Scholar
  38. 38.
    Abd El-Rehim SS, Hassan HH, Amin MA (2002) Mater Chem Phys 78:337CrossRefGoogle Scholar
  39. 39.
    Khaled KF, Amin MA (2009) Corros Sci 51:2098CrossRefGoogle Scholar
  40. 40.
    Moretti G, Quartarone G, Tassan A (1996) Electrochim Acta 41:1971CrossRefGoogle Scholar
  41. 41.
    Jeyaprabha C, Sathiyanarayanan S, Venkatachari G (2005) Appl Surf Sci 246:108CrossRefGoogle Scholar
  42. 42.
    Flitt HJ, Schweinsberg DP (2005) Corros Sci 47:2125CrossRefGoogle Scholar
  43. 43.
    Flitt HJ, Schweinsberg DP (2005) Corros Sci 47:3034CrossRefGoogle Scholar
  44. 44.
    Abd El-Rehim SS, Hassan HH, Amin MA (2002) Appl Surf Sci 187:279CrossRefGoogle Scholar
  45. 45.
    Barcia OE, Mattos OR, Pebere N, Tribollet B (1993) J Electrochem Soc 140:2825CrossRefGoogle Scholar
  46. 46.
    Deslouis C, Tribollet B, Mengoli G, Musiani MM (1988) J Appl Electrochem 18:374CrossRefGoogle Scholar
  47. 47.
    Macdonald JR (1987) Impedance spectroscopy. Wiley, New YorkGoogle Scholar
  48. 48.
    Boukamamp BA (1980) Solid State Ionics 20:31CrossRefGoogle Scholar
  49. 49.
    International Report CT (1989) 89/214/128, University of Twente, Eindhoven, The NetherlandsGoogle Scholar
  50. 50.
    Benedetti AV, Sumodjo PTA, Nobe K, Cabot PL, Proud WG (1995) Electrochim Acta 40:2657CrossRefGoogle Scholar
  51. 51.
    Lorenz WJ, Mansfeld F (1981) Corros Sci 21:647CrossRefGoogle Scholar
  52. 52.
    McCafferty E, Hackerman N (1972) J Electrochem Soc 119:146CrossRefGoogle Scholar
  53. 53.
    Amin MA (2006) J Appl Electrochem 36:215CrossRefGoogle Scholar
  54. 54.
    Damaskin BB, Petrii OA, Batraktov B (1971) Adsorption of organic compounds on electrodes. Plenum Press, New YorkCrossRefGoogle Scholar
  55. 55.
    Do D (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London, p 10Google Scholar
  56. 56.
    Khamis E, Mellucci I, Lantanision RM, El-Ashry ESH (1991) Corrosion 47:677CrossRefGoogle Scholar
  57. 57.
    Donahue FM, Nobe K (1965) J Electrochem Soc 112:886CrossRefGoogle Scholar
  58. 58.
    Durnie W, Marco RD, Jefferson A, Kinsella B (1999) J Electrochem Soc 146:1751CrossRefGoogle Scholar
  59. 59.
    Martinez S, Stern I (2002) Appl Surf Sci 199:83CrossRefGoogle Scholar
  60. 60.
    Martinez S (2003) Mater Chem Phys 77:97CrossRefGoogle Scholar
  61. 61.
    El-Sherbini EF (1999) Mater Chem Phys 60:286CrossRefGoogle Scholar
  62. 62.
    Bastidas JM, De Dambornea J, Vazquez AJ (1997) J Appl Electrochem 27:345CrossRefGoogle Scholar
  63. 63.
    Mansfeld F (1987) Corrosion Mechanism. Marcel Dekkar, New York, p 119Google Scholar
  64. 64.
    Antropov LI, Makushin EM, Panasenko VF (1981) Metal corrosion inhibitors. Kiev, TechnikaGoogle Scholar
  65. 65.
    Hassan HH, Abdelghani E, Amin MA (2007) Electrochim Acta 52:6359CrossRefGoogle Scholar
  66. 66.
    Amin MA, Abd El-Rehim SS, El-Sherbini EEF, Bayoumi RS (2007) Electrochim Acta 52:3588CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mohammed A. Amin
    • 1
    Email author
  • Sayed S. Abd El Rehim
    • 1
  • M. M. El-Naggar
    • 2
  • Hesham T. M. Abdel-Fatah
    • 3
  1. 1.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceBenha UniversityBenhaEgypt
  3. 3.Central Chemical LaboratoriesEgyptian Electricity Holding CompanyCairoEgypt

Personalised recommendations