Journal of Materials Science

, Volume 44, Issue 22, pp 6167–6181 | Cite as

Effect of H2S on Fe corrosion in CO2-saturated brine

  • E. Abelev
  • J. Sellberg
  • T. A. Ramanarayanan
  • S. L. BernasekEmail author


The effect of H2S at ppm level concentrations on iron corrosion in 3 wt% NaCl solutions saturated with CO2 in the temperature range of 25–85 °C is examined using electrochemical and surface science techniques. Small H2S concentrations (5 ppm) have an inhibiting effect on corrosion in the presence of CO2 at temperatures from 25 to 55 °C. At 85 °C, however, 50 ppm H2S is needed to provide significant corrosion inhibition. At higher H2S concentrations, the corrosion rate increases rapidly, while still remaining below the rate for the H2S-free solution. Characterization of the iron surfaces after corrosion was carried out using X-ray photoelectron spectroscopy and X-ray diffraction. A sulfur peak (S2p) is observed at a binding energy of 161.8 eV in all cases, attributable to disulfide \( ({\text{S}}_{2}^{2-}) \) formation. Corrosion protection in the temperature range 25–55 °C can be attributed to Fe(II) bonded to S and O. At 85 °C, protection of the iron surface is most likely due to FeS2 formation. Morphological changes on the iron surface after exposure to H2S containing solutions were observed by SEM. A thin protective film was seen after exposure to solutions containing 5 ppm H2S at 25 °C, while at 85 °C, with the addition of 50 ppm H2S to CO2-saturated brine solution, a dense protective film was formed on the iron surface.


Corrosion Rate Corrosion Product Corrosion Protection Iron Surface FeCO3 



This work was partially supported by the National Science Foundation, Division of Chemistry, CHE-0616457.


  1. 1.
    Kermani MB, Harrop D (1996) SPE Production Facilities 11:186Google Scholar
  2. 2.
    Kermani MB, Morshed A (2003) Corrosion 59:659CrossRefGoogle Scholar
  3. 3.
    McIntyre P (2002) Corros Manag 46:19Google Scholar
  4. 4.
    Bonis M, Thiam P, Eurocorr 2000, Conference of the European Federation of CorrosionGoogle Scholar
  5. 5.
    Schwenk W (1974) Werst Korros 25:643CrossRefGoogle Scholar
  6. 6.
    de Waard C, Milliams DE (1975) Corrosion 31:177CrossRefGoogle Scholar
  7. 7.
    Ogundele GI, White WE (1987) Corrosion 43:665CrossRefGoogle Scholar
  8. 8.
    Crolet JL, Bonis MR (1983) Corrosion 39:39CrossRefGoogle Scholar
  9. 9.
    Moiseeva LS (2005) Protection of materials, vol 41, pp 82–90Google Scholar
  10. 10.
    Magot M, Tardy C, Caumette P, Hurtevent C, Crolet JL (1993) 10th European Corrosion Congress, pp 576–580Google Scholar
  11. 11.
    Schmitt G (1984) Advances in CO2 corrosion, vol 1. NACE, Houston, p 1Google Scholar
  12. 12.
    Crolet JL, Thevenot N, Nešić S (1996) CORROSION/96, paper no. 4. NACE, Houston, TXGoogle Scholar
  13. 13.
    Videm K, Dugstad A (1987) CORROSION/87, paper no. 42. NACE, Houston, TXGoogle Scholar
  14. 14.
    Videm K, Dugstad A (1989) Mater Perform 4:46Google Scholar
  15. 15.
    Moiseeva LS, Kuznetsov YI (1996) Zashch Met 32:513Google Scholar
  16. 16.
    Belevskii VS, Kudelin YI, Lisov SF, Timonin VA (1990) Fiz Khim Mekh Mater 6:16Google Scholar
  17. 17.
    De Waard C, Lotz U, Milliams DE (1991) Corrosion 47:976CrossRefGoogle Scholar
  18. 18.
    Moiseeva LS, Tereshina RM (1994) Zashch Met 30:410Google Scholar
  19. 19.
    Dunlop AK, Hassell HL, Rhodes PR (1984) Advances in CO2 corrosion, vol 1. NACE, Houston, p 52Google Scholar
  20. 20.
    De Waard C, Lotz U, Milliams DE (1991) CORROSION/91, paper no. 577. NACE, Houston, TXGoogle Scholar
  21. 21.
    Wieckowski A, Ghali E, Szklarczyk M, Sobkowski J (1983) J Electrochim Acta 28:1619CrossRefGoogle Scholar
  22. 22.
    Ogundele GI, White WE (1986) Corrosion 42:71CrossRefGoogle Scholar
  23. 23.
    French EC, Martin RL, Dougherty JA (1989) CORROSION/89, paper no. 435. NACE, Houston, TXGoogle Scholar
  24. 24.
    Kurahashi H, Kurisu T, Sone I, Wada K, Nakai I (1985) Corrosion 41:211CrossRefGoogle Scholar
  25. 25.
    Bhargava G (2007) PhD dissertation, Princeton UniversityGoogle Scholar
  26. 26.
    Banaś J, Lelek-Borkowska U, Mazurkiewicz B, Solarski W (2007) Electrochim Acta 52:5704CrossRefGoogle Scholar
  27. 27.
    Ma H, Cheng X, Li G, Chen S, Quan Z, Zhao S, Niu L (2000) Corros Sci 42:1669CrossRefGoogle Scholar
  28. 28.
    Wu X, Ma H, Chen S, Xu Z, Sui A (1999) J Electrochem Soc 146:1847CrossRefGoogle Scholar
  29. 29.
    Shoesmith DW, Taylor P, Bailey MG, Owen DG (1980) J Electrochem Soc 127:1007CrossRefGoogle Scholar
  30. 30.
    Vedage H, Ramanarayanan TA, Mumford JD, Smith SN (1993) Corrosion 49:114CrossRefGoogle Scholar
  31. 31.
    Sardisco JB, Wright WB, Greco EC (1963) Corrosion 19:354CrossRefGoogle Scholar
  32. 32.
    Sardisco JB, Pitts RE (1965) Corrosion 21:350CrossRefGoogle Scholar
  33. 33.
    Sardisco JB, Pitts RE (1965) Corrosion 21:245CrossRefGoogle Scholar
  34. 34.
    Nešić S, Nordsveen M, Nyborg R, Stangeland AJ (2003) Corrosion 59:443CrossRefGoogle Scholar
  35. 35.
    Lee K-LJ, Nešić S (2005) CORROSION/05, paper no. 05630. NACE, Houston, TXGoogle Scholar
  36. 36.
    Nešić S, Nordsveen M, Nyborg R, Stangeland AJ (2003) Corrosion 59:489CrossRefGoogle Scholar
  37. 37.
    Ramanarayanan TA, Smith SN (1990) Corrosion 46:66CrossRefGoogle Scholar
  38. 38.
    Mishra B, Al-Hassan S, Olson DL, Salama MM (1997) Corrosion 53:852CrossRefGoogle Scholar
  39. 39.
    Videm K, Kvarekvaal J, Perez T, Fitzsimons G (1998) CORROSION/98, paper no. 1. NACE, Houston, TXGoogle Scholar
  40. 40.
    Kaasa B, Ostvold T (1998) CORROSION/98, paper no. 62. NACE, Houston, TXGoogle Scholar
  41. 41.
    Crolet JL, Pourbaix M, Pourbaix A (1991) CORROSION/91, paper no. 22. NACE, Houston, TXGoogle Scholar
  42. 42.
    Brown B, Nešić S (2005) CORROSION/05, paper no. 05625. NACE, Houston, TXGoogle Scholar
  43. 43.
    Sun W, Nešić S, Papavinasam S (2008) Corrosion 64:586CrossRefGoogle Scholar
  44. 44.
    Brown B, Parakala SR, Nešić S (2004) CORROSION/04, paper no. 04736. NACE, Houston, TXGoogle Scholar
  45. 45.
    Ikeda A, Ueda M, Mukai S (1985) Advances in CO2 corrosion, vol 2. NACE, Houston, TX, pp 1–22Google Scholar
  46. 46.
    Schmitt G, Engels D (2005) CORROSION/98, paper no. 149. NACE, Houston, TXGoogle Scholar
  47. 47.
    Hausler RH, Gaddart HP, Advances in CO2 corrosion, vols 1 (1985) and 2 (1986). NACE, Houston, TXGoogle Scholar
  48. 48.
    Videm K, Kvarekvaal J (1995) Corrosion 51:260CrossRefGoogle Scholar
  49. 49.
    Nešić S, Lee KJ (2002) CORROSION/02, paper no. 131. NACE, Houston, TXGoogle Scholar
  50. 50.
    Yin ZF, Zhao WZ, Bai ZQ, Feng YR, Zhou WJ (2008) Electrochim Acta 53:3690CrossRefGoogle Scholar
  51. 51.
    Murata T, Matsuhashi R, Taniguchi T, Yamamoto K (1979) Offshore technology conference, paper no. 3507Google Scholar
  52. 52.
    Lichti KA, Soylemezoglu S, Cunliffe KD (1981) Proceedings of the New Zealand geothermal workshop ’81, paper no. 103Google Scholar
  53. 53.
    Smith JS, Miller JDA (1975) Br Corros J 10:136CrossRefGoogle Scholar
  54. 54.
    Valdes A, Case R, Ramire ZM, Rui ZA (1988) CORROSION/98, paper no. 22. NACE, Houston, TXGoogle Scholar
  55. 55.
    Svenningsen G, Palencsar A, Kvarekval J (2009) CORROSION/09, paper no. 09359. NACE, Houston, TXGoogle Scholar
  56. 56.
    Bazan JC, Harrison JA, Staikov G, Schmidt E, Juttner K, Lorenz WJ (1988) Electrochim Acta 34:1271CrossRefGoogle Scholar
  57. 57.
    Titz J, Wagner GH, Spahn H, Juttner K, Lorentz WJ (1990) Corrosion 46:221CrossRefGoogle Scholar
  58. 58.
    Ernst P, Earnshaw A, Wadsworth IP, Marshall GW (1997) Corros Sci 39:1329CrossRefGoogle Scholar
  59. 59.
    Boukamp BA (2004) Solid State Ionics 176:1959CrossRefGoogle Scholar
  60. 60.
    Boukamp BA (1997) Equivalent circuit. University of Twente, Twente, NLGoogle Scholar
  61. 61.
    Shirley DA (1972) Phys Rev 135:4709CrossRefGoogle Scholar
  62. 62.
    Heuer JK, Stubbins JF (1999) Corros Sci 41:1231CrossRefGoogle Scholar
  63. 63.
    Sosa E, Cabrera-Sierra R, Rincon ME, Oropeza MT, Gonzáleza I (2002) Electrochim Acta 47:1197CrossRefGoogle Scholar
  64. 64.
    Sosa E, Cabrera-Sierra R, Oropeza MT, Hernández F, Casillas N, Tremont R, Cabrera C, Gonzáleza I (2003) J Electrochem Soc 150:B530CrossRefGoogle Scholar
  65. 65.
    Bhargava G, Gouzman I, Chun CM, Ramanarayanan TA, Bernasek SL (2007) Appl Surf Sci 253:4322CrossRefGoogle Scholar
  66. 66.
    Wu SL, Cui ZD, He F, Bai ZQ, Zhu SL, Yang XJ (2004) Mater Lett 58:1076CrossRefGoogle Scholar
  67. 67.
    López DA, Schreiner WH, de Sánchez SR, Simison SN (2004) Appl Surf Sci 236:77CrossRefGoogle Scholar
  68. 68.
    Tang Z, Hong S, Xiao W, Taylor J (2006) Corros Sci 48:322CrossRefGoogle Scholar
  69. 69.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Physical Electronics DivisionGoogle Scholar
  70. 70.
    Thomas JE, Jones CF, Skinner WM, Smart RSC (1998) Geo Cosmchim Acta 62:1555CrossRefGoogle Scholar
  71. 71.
    Brundle CR, Chuang TJ, Wandelt K (1977) Surf Sci 68:459CrossRefGoogle Scholar
  72. 72.
    Thomas JE, Skinner WM, Smart RSC (2003) Geo Cosmchim Acta 67:831CrossRefGoogle Scholar
  73. 73.
    Li Y, van Santen RA, Weber Th (2008) J Solid State Chem 181:151Google Scholar
  74. 74.
    Kim C-Y, Escuadro AA, Bedzyk MJ (2007) Surf Sci 601:4966CrossRefGoogle Scholar
  75. 75.
    Prasad J, Murray E, Kelber JA (1993) Surf Sci 289:10CrossRefGoogle Scholar
  76. 76.
    Gruzalski GR, Zehner DM, Wendelken JF (1985) Surf Sci 159:53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • E. Abelev
    • 1
  • J. Sellberg
    • 1
  • T. A. Ramanarayanan
    • 1
  • S. L. Bernasek
    • 1
    Email author
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations