Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 6100–6109 | Cite as

The influence of stearic acid coating on the properties of magnesium hydroxide, hydromagnesite, and hydrotalcite powders

  • Walter W. FockeEmail author
  • Dan Molefe
  • F. J. W. Labuschagne
  • Shatish Ramjee
Article

Abstract

Hydrated filler-type flame retardants were coated with approximately a monolayer of stearic acid using a solvent technique. Compared to the uncoated powders, the BET surface area was lower, the powder packing density was improved, and the thickening effect on white oil was significantly reduced. The latter two observations are rationalized in terms of a reduction in the attractive interactions between the powder particles. The viscosity of white oil slurries containing 25 wt% solids showed shear-thinning non-Newtonian behavior. The coated powders showed significantly lower viscosities at low shear rates although the difference diminished at high shear rates. The lower viscosities shown by the coated powders indicate that the surface modification facilitated the break-up of agglomerates and the dispersion of individual particles in the fluid.

Keywords

Shear Rate Stearic Acid Flame Retardant Layered Double Hydroxide Hydrotalcite 

Notes

Acknowledgements

Financial support for this research, from the Institutional Research Development Programme (IRDP) of the National Research Foundation of South Africa (NRF) and the THRIP program of the Department of Trade and Industry (administered by the NRF), is gratefully acknowledged.

References

  1. 1.
    Laoutid F, Bonnaud L, Alexandre M (2009) Mater Sci Eng R 63(3):100CrossRefGoogle Scholar
  2. 2.
    Delfosse L, Baillet C, Brault A, Brault D (1989) Polym Degrad Stab 23(4):337CrossRefGoogle Scholar
  3. 3.
    Horn WE (2000) In: Grand AF, Wilkie CA (eds) Fire retardancy of polymeric materials, 1st edn. CRC Press, Boca Raton, p 293Google Scholar
  4. 4.
    Hornsby PR (2001) Int Mater Rev 46(4):199CrossRefGoogle Scholar
  5. 5.
    Fenimore CP, Jones GW (1966) Combust Flame 10(2):295CrossRefGoogle Scholar
  6. 6.
    Fenimore CP, Martin FJ (1966) Combust Flame 10(2):135CrossRefGoogle Scholar
  7. 7.
    Hornsby PR, Watson CL (1989) Plast Rubber Process Appl 11(1):45Google Scholar
  8. 8.
    Hornsby PR, Watson CL (1990) Polym Degrad Stab 30(1):73CrossRefGoogle Scholar
  9. 9.
    Carpentier F, Bourbigot S, Le Bras M, Delobel R, Foulon M (2000) Polym Degrad Stab 69(1):83CrossRefGoogle Scholar
  10. 10.
    Genovese A, Shanks (2007) Polym Degrad Stab 92(1):2CrossRefGoogle Scholar
  11. 11.
    Burns M, Wagenknecht U, Kretzschmar B, Focke WW (2008) J Vinyl Addit Technol 14:113CrossRefGoogle Scholar
  12. 12.
    Wang Z, Chen Z, Fan W, Nie W (2006) Polym Plast Technol Eng 45(2):191CrossRefGoogle Scholar
  13. 13.
    Zhang F, Zhang H, Su Z (2007) Appl Surf Sci 253(18):7393CrossRefGoogle Scholar
  14. 14.
    Usui H (2002) J Chem Eng Jpn 35(9):815CrossRefGoogle Scholar
  15. 15.
    Potente H, Flecke J (1997) J Reinf Plast Compos 16(14):1281CrossRefGoogle Scholar
  16. 16.
    Papirer E, Schultz J, Turchi C (1984) Eur Polym J 20:1155CrossRefGoogle Scholar
  17. 17.
    Gilbert M, Petiraksakul P (1997) Polym Polym Compos 5(8):535Google Scholar
  18. 18.
    Osman M, Suter U (2002) Chem Mater 14:4408CrossRefGoogle Scholar
  19. 19.
    Khanna YP, Taylor DA, Paynter CD, Skuse DR (2009) J Mater Sci (submitted)Google Scholar
  20. 20.
    Liauw CM, Rothon RN, Hurst SJ, Lees GC (1998) Compos Interfaces 5(6):503CrossRefGoogle Scholar
  21. 21.
    Gilbert M, Sutherland I, Guest A (2000) J Mater Sci 35(2):391. doi: https://doi.org/10.1023/A:1004759115462 CrossRefGoogle Scholar
  22. 22.
    Gilbert M, Petiraksakul P, Mathieson I (2001) Mater Sci Technol 17(11):1472CrossRefGoogle Scholar
  23. 23.
    Haurie L, Fernández AI, Velasco JI, Chimenos JM, Ticó-Grau JR, Espiell F (2005) Macromol Symp 221:165CrossRefGoogle Scholar
  24. 24.
    Hornsby PR (1999) Adv Polym Sci 139:155CrossRefGoogle Scholar
  25. 25.
    Hornsby PR (1994) Fire Mater 18(5):269CrossRefGoogle Scholar
  26. 26.
    Rigolo M, Woodhams RT (1992) Polym Eng Sci 32:327CrossRefGoogle Scholar
  27. 27.
    Huang H, Tian M, Yang J, Li H, Liang W, Zhang L, Li X (2008) J Appl Polym Sci 107(5):3325CrossRefGoogle Scholar
  28. 28.
    Camino G, Maffezzoli A, Braglia M, De Lazzaro M, Zammarano M (2001) Polym Degrad Stab 74(3):457CrossRefGoogle Scholar
  29. 29.
    Miyata S, Imahashi T, Anabuki H (1980) J Appl Polym Sci 25(3):415CrossRefGoogle Scholar
  30. 30.
    Miyata S, Kumura T (1973) Chem Lett 843–848Google Scholar
  31. 31.
    Bellotto M, Rebours B, Clause O, Lynch J (1996) J Phys Chem 100:8524Google Scholar
  32. 32.
    De Roy A, Forano C, El Malki K, Besse JP (1992) In: Occelli ML, Robson HE (eds) Expanded clays and other microporous solids, 1st edn, vol 2. Van Nostrand Reinhold, New York, p 108Google Scholar
  33. 33.
    White WB (1971) Am Mineral 56:46Google Scholar
  34. 34.
    Hales MC, Frost RL, Martens WN (2008) J Raman Spectrosc 39:1141CrossRefGoogle Scholar
  35. 35.
    Raade G (1970) Am Mineral 55(9–10):1457Google Scholar
  36. 36.
    Hayek E, Gleispach H (1966) Monatsh Chem 97(4):1059CrossRefGoogle Scholar
  37. 37.
    Haurie L, Fernández AI, Velasco JI, Chimenos JM, Lopez Cuesta JM, Espiell F (2006) Polym Degrad Stab 91(5):989CrossRefGoogle Scholar
  38. 38.
    Morgan AB, Cogen JM, Opperman RS, Harris JD (2007) Fire Mater 3(6):387CrossRefGoogle Scholar
  39. 39.
    Botha A, Strydom CA (2001) Hydrometallurgy 62(3):175CrossRefGoogle Scholar
  40. 40.
    Bera P, Rajamathi M, Hegde MS, Kamath PV (2000) Bull Mater Sci 23:141CrossRefGoogle Scholar
  41. 41.
    Choudhary VR, Pataskar SG, Gunjikar VG, Zope GB (1994) Thermochim Acta 232:95CrossRefGoogle Scholar
  42. 42.
    Itoh T, Ohta N, Shichi T, Yui T, Takagi K (2003) Langmuir 19:9120CrossRefGoogle Scholar
  43. 43.
    He JX, Yamashita S, Jones W, Yamagishi A (2002) Langmuir 18:1580CrossRefGoogle Scholar
  44. 44.
    Mandersloot WGB, Scott KJ (1990) S Afr J Chem Eng 2:53Google Scholar
  45. 45.
    Krieger IM, Dougherty TJ (1959) Trans Soc Rheol 3:137CrossRefGoogle Scholar
  46. 46.
    Krieger (1972) Adv Colloid Interface Sci 3(2):111CrossRefGoogle Scholar
  47. 47.
    Jones DAR, Leary B, Boger DV (1991) J Colloid Interface Sci 147(2):479CrossRefGoogle Scholar
  48. 48.
    Eilers H (1941) Kolloid-Z 97(3):313CrossRefGoogle Scholar
  49. 49.
    Eilers H (1943) Kolloid-Z 102(2):154CrossRefGoogle Scholar
  50. 50.
    Usui H, Kishimoto K, Suzuki H (2001) Chem Eng Sci 56(9):2979CrossRefGoogle Scholar
  51. 51.
    Quemada D (1986) Rheol Acta 25(6):647CrossRefGoogle Scholar
  52. 52.
    Wildemuth CR, Williams MC (1984) Rheol Acta 23(6):627CrossRefGoogle Scholar
  53. 53.
    Tsenoglou C (1990) J Rheol 34(1):15CrossRefGoogle Scholar
  54. 54.
    Rwei SP, Manas-Zloczower I, Feke DL (1990) Polym Eng Sci 30(12):701CrossRefGoogle Scholar
  55. 55.
    Hansen S, Khakhar DV, Ottino JM (1998) Chem Eng Sci 53(10):1803CrossRefGoogle Scholar
  56. 56.
    Jalali P, Li M (2004) J Chem Phys 120(2):1138CrossRefGoogle Scholar
  57. 57.
    Rey F, Fornés V, Rojo JM (1992) J Chem Soc Faraday Trans 88:2233CrossRefGoogle Scholar
  58. 58.
    Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M (1979) Thermochim Acta 33:127CrossRefGoogle Scholar
  59. 59.
    Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutan N, Kato M (1979) Thermochim Acta 32(1–2):277CrossRefGoogle Scholar
  60. 60.
    Vágvölgyi V, Frost RL, Hales M, Locke A, Kristóf J, Horváth E (2008) J Therm Anal Calorim 92(3):893CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Walter W. Focke
    • 1
    Email author
  • Dan Molefe
    • 2
  • F. J. W. Labuschagne
    • 1
  • Shatish Ramjee
    • 1
  1. 1.Department of Chemical Engineering, Institute of Applied MaterialsUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of ChemistryUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations