Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 6078–6089 | Cite as

Structure–property interface correlation of fly ash–isotactic polypropylene composites

  • Dilip Chandra Deb Nath
  • Sri BandyopadhyayEmail author
  • Aibing Yu
  • Qinghua Zeng
  • Tapas Das
  • Darryl Blackburn
  • Chris White
Article

Abstract

Composites of isotactic semicrystalline polypropylene (PP) reinforced with fly ash (FA) particles (particle size 5–60 μm) were prepared by injection moulding at 210 °C incorporating 20, 45 and 60% by weight of fly ash. Tensile tests were carried out at 25, 50 and 70 °C. WAXRD, DSC and SEM studies were also undertaken. Modulus of elasticity of all composites at all temperatures was higher than that of the corresponding PP samples—the gain ranged between 10 and 60%. The strength of the composites had a mixed trend. At 25 °C, the composites suffered significant loss in strength, as much as 47%, whereas, at 50 and 70 °C, there was up to 15% gain in strength. Strain to failure of the composite samples ranged from as low as 6% at 25 °C to over 50% at 70 °C, coinciding with increase of Pukanszky parameter from 1.5 to 4.1. WAXRD and DSC tests confirm that FA is nucleator of β-crystalline phase the amount of which increases to a maximum of 11% with increasing FA. SEM studies indicated that the polymer had a distinctly high lamellar ductility and showed interfacial interaction with FA in 20% FA composites at 50 and 70 °C. The –OH group on the surface of FA appears responsible for the formation of interfacial interaction with PP chain. Notched Charpy tests showed a maximum gain of 58% impact energy for the composite with 45% FA, tested at 70 °C over that of pure PP at 25 °C.

Keywords

Inductively Couple Plasma Atomic Emission Spectroscopy Injection Moulding Inductively Couple Plasma Atomic Emission Spectroscopy Quinacridon Differential Scanning Calorimetry Heating Rate 

Notes

Acknowledgements

The authors are grateful to the help and cooperation of Dr. Norman Booth, Department of Chemistry, Materials and Forensic Science, University of Technology, Sydney, NSW 2000, Australia in providing Instron for tensile strength at elevated temperature. The authors are also grateful to Australian Research Council for the financial support of this work.

References

  1. 1.
    Iyer RS, Scott JA (2001) Resour Conserv Recyl 31:217CrossRefGoogle Scholar
  2. 2.
    Gomes S, Francois M, Abdelmoula M, Refait P, Pellissier C, Evrard O (1999) Cem Concr Res 29:1705CrossRefGoogle Scholar
  3. 3.
    Demanet CM (1995) Appl Surf Sci 89:97CrossRefGoogle Scholar
  4. 4.
    Kutchko BG, Kim AG (2006) Fuel 85:2537CrossRefGoogle Scholar
  5. 5.
    Ward CR, French D (2006) Fuel 85:2268CrossRefGoogle Scholar
  6. 6.
    McDowell RW (2005) Aust J Soil Res 43:853CrossRefGoogle Scholar
  7. 7.
    Gorninski JP, Molin DCD, Kazmierczak CS (2004) Cem Concr Res 34:2091CrossRefGoogle Scholar
  8. 8.
    Kojima Y, Usuki A, Kawasumi M, Fukushima Y, Okada A, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1179CrossRefGoogle Scholar
  9. 9.
    Guhanathan S, Sarojadevi M (2004) Compos Interface 11(1):43CrossRefGoogle Scholar
  10. 10.
    Gupta N, Brar BS, Woldesenbet E (2001) Bull Mater Sci 24(2):219CrossRefGoogle Scholar
  11. 11.
    Wong KWY, Truss RW (1994) Comp Sci Technol 52:361CrossRefGoogle Scholar
  12. 12.
    Wang M, Shen Z, Cai C, Ma S, Xing Y (2004) J Appl Polym Sci 92:126CrossRefGoogle Scholar
  13. 13.
    Jarvela PA, Jarvela PK (1996) J Mater Sci 31:3853. doi: https://doi.org/10.1007/BF00352802 CrossRefGoogle Scholar
  14. 14.
    Huang X, Hwang JY, Gillis JM (2003) J Miner Mater Charact Eng 2(1):11Google Scholar
  15. 15.
    Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usuki A (2001) Nano Lett 1(6):295CrossRefGoogle Scholar
  16. 16.
    Tjong SC, Li RKY, Cheung T (1997) Polym Eng Sci 37(1):166CrossRefGoogle Scholar
  17. 17.
    Bigg DM (1987) Polym Compos 8(2):115CrossRefGoogle Scholar
  18. 18.
    Li JX, Silverstein M, Hiltner A, Baer E (1994) J Appl Polym Sci 52:255CrossRefGoogle Scholar
  19. 19.
    Brydson JA (2001) Plastics materials. Butterworth-Heinemann, Oxford, Boston, Elsiver Science. ISBN: 0750618647Google Scholar
  20. 20.
    Lotz B, Wittmann JC, Lovinger JA (1996) Polymer 37(22):4979CrossRefGoogle Scholar
  21. 21.
    Liu J, Wei X, Guo Q (1990) J Appl Polym Sci 41:2829CrossRefGoogle Scholar
  22. 22.
    Ferrage E, Martin F, Boudet A, Petit S, Fourty G, Jouffet F, Micoud P, Parseval PD, Salvi S, Courgerette C, Ferret J, Saint-Gerard Y, Buratto S, Fortune JP (2002) J Mater Sci 37:1561. doi: https://doi.org/10.1023/A:1014929121367 CrossRefGoogle Scholar
  23. 23.
    Mucha M, Krolikowski Z (2003) J Therm Anal Calorim 74:549CrossRefGoogle Scholar
  24. 24.
    Chen J, Li X, Wu C (2007) Polym J 39(7):722CrossRefGoogle Scholar
  25. 25.
    Zhang QX, Yu ZZ, Xie XL, Mai YW (2004) Polymer 45:5985CrossRefGoogle Scholar
  26. 26.
    Kim B, Lee SH, Lee D, Ha B, Park J, Char K (2004) Ind Eng Chem Res 43:6082CrossRefGoogle Scholar
  27. 27.
    Tang J, Wang Y, Liu HY, Belfiore LA (2004) Polymer 45:2081CrossRefGoogle Scholar
  28. 28.
    Gaceva GB, Janevsky A, Mader E (2001) Polymer 42:4409CrossRefGoogle Scholar
  29. 29.
    Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K (2004) Polym Int 53:176Google Scholar
  30. 30.
    Valentini L, Biagiotti J, Kenny JM, Santucci S (2003) J Appl Polym Sci 87:708CrossRefGoogle Scholar
  31. 31.
    Xie XL, Li RKY, Jong SC, Mai YW (2002) Polym Compos 23(3):319CrossRefGoogle Scholar
  32. 32.
    Yuan Q, Misra RDK (2006) Polymer 47:4421CrossRefGoogle Scholar
  33. 33.
    Leong YW, Bakar MBA, Ishak ZAM, Ariffin A, Pukanszky B (2004) J Appl Polym Sci 91:3315CrossRefGoogle Scholar
  34. 34.
    Mueller R, Kammler HK, Wegner K, Pratsinis SE (2003) Langmuir 19:160CrossRefGoogle Scholar
  35. 35.
    Paparazzo E (1996) Surf Interface Anal 24:729CrossRefGoogle Scholar
  36. 36.
    Nielsen LE (1966) J Appl Polym Sci 10:97CrossRefGoogle Scholar
  37. 37.
    Tsai SW (1988) Composite design. Think Composites Press, Dayton, OHGoogle Scholar
  38. 38.
    Kinloch AJ (1987) Rubber-toughened plastics. American Chemical Society, Washington, DC, pp 67–91. ISBN: 0841214883Google Scholar
  39. 39.
    Bandyopadhyay S, Brown HR (1981) Polymer 22:245CrossRefGoogle Scholar
  40. 40.
    Anandhan S, De PP, Bhowmick AK, De SK (2003) J Appl Polym Sci 90:2348CrossRefGoogle Scholar
  41. 41.
    Ghosh A, Rajeev RS, Dey SK, Sharp W, Bandyopadhyay S (2006) J Elastomers Plast 38:119CrossRefGoogle Scholar
  42. 42.
    Weon JI, Sue HJ (2006) J Mater Sci 41:2219. doi: https://doi.org/10.1007/s10853-006-7171-x CrossRefGoogle Scholar
  43. 43.
    Spanoudakis J, Young RJ (1984) J Mater Sci 19:487. doi: https://doi.org/10.1007/BF00553571 CrossRefGoogle Scholar
  44. 44.
    Tan LS, Mchugh AJ (1996) J Mater Sci 31:3701. doi: https://doi.org/10.1007/BF00352783 CrossRefGoogle Scholar
  45. 45.
    Bandyopadhyay S (1990) Mater Sci Eng A 125:157CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dilip Chandra Deb Nath
    • 1
  • Sri Bandyopadhyay
    • 1
    Email author
  • Aibing Yu
    • 1
  • Qinghua Zeng
    • 1
  • Tapas Das
    • 2
  • Darryl Blackburn
    • 2
  • Chris White
    • 2
  1. 1.School of Material Science and EngineeringThe University of New South WalesKensingtonAustralia
  2. 2.Research and Ash DevelopmentCement AustraliaDarraAustralia

Personalised recommendations