Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 6069–6077 | Cite as

Optical characterization of a new donor–acceptor type conjugated polymer derived from 3,4-diphenylthiophene

  • M. G. Manjunatha
  • Airody Vasudeva AdhikariEmail author
  • Pramod Kumar Hegde
  • C. S. Suchand Sandeep
  • Reji Philip
Article

Abstract

A new donor–acceptor type poly{2-(3,4-didecyloxythiophen-2-yl)-5-[3,4-diphenyl-5-(1,3,4-oxadiazol-2-yl)thiophen-2-yl]-1,3,4-oxadiazole} (P1) has been designed and synthesized starting from thiodiglycolic acid, 1,2-diphenylethane-1,2-dione, and diethyl oxalate through multi-step reactions using precursor polyhydrazide route. The charge-transporting and linear optical property of the polymer has been investigated by cyclic voltammetric, UV–visible, and fluorescence emission spectroscopic studies. The UV–visible absorption spectrum of polymer in thin film form showed maxima at 420 nm. The polymer displayed bluish-green fluorescence both in solution and thin film form. The optical band gap is determined to be 2.27 eV. Third-order nonlinear optical property of the new polymer has been investigated at 532 nm using single beam Z-scan and degenerate four wave mixing (DFWM) techniques with nanosecond laser pulses. The absorptive nonlinearity observed for the polymer P1 is of optical limiting type, which arises due to an “effective” three-photon absorption (3PA) process. The third-order nonlinear optical susceptibility (χ(3)) of the polymer is found to be 0.831 × 10–12 esu. Both linear and nonlinear optical studies revealed that the new polymer (P1) is a promising material for applications in photonic devices.

Keywords

Oxadiazole Nonlinear Optical Property Absorptive Nonlinearity Acceptor Type Anhydrous Aluminum Chloride 

Notes

Acknowledgements

The authors are grateful to the CDRI, Lucknow, NMR research centre, IISc Bangalore, and RRL, Trivandrum, for providing instrumental analyses.

References

  1. 1.
    Sutherland RL (1996) Handbook of nonlinear optics. Dekker, New YorkGoogle Scholar
  2. 2.
    Perry JW, Mansour K, Lee I-YS, Wu X-L, Bedworth PV, Chen C-T, Ng D, Marder SR, Miles P, Wada T, Tian M, Sasabe H (1996) Science 273:1533CrossRefGoogle Scholar
  3. 3.
    Ronchi A, Cassano T, Tommasi R, Babudri F, Cardone A, Farinola GM, Naso F (2003) Synth Met 139:831CrossRefGoogle Scholar
  4. 4.
    Cassano T, Tommasi R, Babudri F, Cardone A, Farinola GM, Naso F (2002) Opt Lett 27:176CrossRefGoogle Scholar
  5. 5.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend R, Burn PL, Holmes AB (1990) Nature 347:539CrossRefGoogle Scholar
  6. 6.
    Grem G, Leditzky G, Ullrich B, Leising G (1992) Adv Mater 4:36CrossRefGoogle Scholar
  7. 7.
    Leclerc M (2001) J Polym Sci Part A: Polym Chem 39:2867CrossRefGoogle Scholar
  8. 8.
    Pei J, Yu W-L, Haung W, Heeger AJ (2000) Chem Commun 1631Google Scholar
  9. 9.
    Nisoli M, Cybo-Ottone A, De Silvestri S, Magni V, Tubino R, Botta C, Musco A (1993) Phys Rev B 147:10881CrossRefGoogle Scholar
  10. 10.
    Roncali J (1992) Chem Rev 92:711CrossRefGoogle Scholar
  11. 11.
    Kishino S, Ueno Y, Ochiai K, Rikukawa M, Sanui K, Kobayashi T, Kunugita H, Ema K (1998) Phys Rev B 58:R13430CrossRefGoogle Scholar
  12. 12.
    John Kiran A, Udayakumar D, Chandrasekharan K, Adhikari AV, Shashikala HD (2006) J Phys B: Mol Opt Phys 39:3747CrossRefGoogle Scholar
  13. 13.
    Udayakumar D, Adhikari AV (2006) Synth Met 156:1168CrossRefGoogle Scholar
  14. 14.
    Henckens A, Colladet K, Fourier S, Cleij TJ, Lutsen L, Gelan J, Vanderzande D (2005) Macromolecules 38:19CrossRefGoogle Scholar
  15. 15.
    Sheik-Bahae M, Said AA, Wei T, Hagan DJ, Van Styrland EW (1990) IEEE J Quantum Electron 26:760CrossRefGoogle Scholar
  16. 16.
    Strukelj M, Papadimitrakopoulos F, Miller TM, Rotheberg LJ (1995) Science 267:1969CrossRefGoogle Scholar
  17. 17.
    Janietz S, Wedel A (1997) Adv Mater 9:403CrossRefGoogle Scholar
  18. 18.
    de Leeuw DM, Simenon MMJ, Brown AB, Einerhand REF (1997) Synth Met 87:53CrossRefGoogle Scholar
  19. 19.
    Agrawal AK, Jenekhe SA (1996) Chem Mater 8:579CrossRefGoogle Scholar
  20. 20.
    Yang C-J, Jenekhe SA (1995) Macromolecules 28:1180CrossRefGoogle Scholar
  21. 21.
    Harilal SS, Bindhu CV, Nampoori VPN, Vallabhan CPG (1999) J Appl Phys 86:1388CrossRefGoogle Scholar
  22. 22.
    Tutt LW, Boggess TF (1993) Progr Quantum Electron 17:299CrossRefGoogle Scholar
  23. 23.
    Philip R, Ravindrakumar G, Sandhyarani N, Pradeep T (2000) Phys Rev B 62:13160CrossRefGoogle Scholar
  24. 24.
    Santosh Kumar RS, Venugopal Rao S, Giribabu L, Narayana Rao D (2007) Chem Phys Lett 447:274CrossRefGoogle Scholar
  25. 25.
    Cohanoschi I, Garcı M, Toro C, Belfield KD, Hernandez FE (2006) Chem Phys Lett 430:133CrossRefGoogle Scholar
  26. 26.
    Wang P, Ming H, Xie J, Zhang W, Gao X, Xu Z, Wei X (2001) Opt Comm 192:387CrossRefGoogle Scholar
  27. 27.
    Zheng Q, He GS, Lu C, Prasad PN (2005) J Mat Chem 15:3488CrossRefGoogle Scholar
  28. 28.
    Cassano T, Tommasi R, Tassara M, Babudri F, Cardone A, Farinola GM, Naso F (2001) Chem Phys 272:111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. G. Manjunatha
    • 1
  • Airody Vasudeva Adhikari
    • 1
    Email author
  • Pramod Kumar Hegde
    • 1
  • C. S. Suchand Sandeep
    • 2
  • Reji Philip
    • 2
  1. 1.Organic Chemistry Division, Department of ChemistryNational Institute of Technology KarnatakaMangaloreIndia
  2. 2.Light and Matter Physics GroupRaman Research InstituteBangaloreIndia

Personalised recommendations