Journal of Materials Science

, Volume 44, Issue 22, pp 6060–6068 | Cite as

Dielectric relaxation studies on [PEO–SiO2]:NH4SCN nanocomposite polymer electrolyte films

  • S. L. Agrawal
  • Markandey Singh
  • Mridula Tripathi
  • Mrigank Mauli Dwivedi
  • Kamlesh PandeyEmail author


Present work deals with findings on dielectric relaxation behaviour and a.c. conduction in a SiO2-doped polymer nanocomposite electrolyte system, namely, [(100 − x)PEO + xSiO2]:yNH4SCN. The formation of nanocomposite has been ascertained by XRD measurements. The effect of salt and filler (SiO2) on conductivity response of PEO-based nanocomposite polymer electrolyte has been investigated by impedance spectroscopy. The variation of dielectric permittivity, dielectric loss and modulus spectra with frequency and temperature was carried out from impedance spectroscopy data. The a.c. conductivity seems to follow the universal power law.


Polymer Electrolyte Dielectric Permittivity Dielectric Relaxation NH4SCN Ceramic Filler 


  1. 1.
    Gray FM (1991) Solid polymer electrolyte: fundamental and applications. VCH, New YorkGoogle Scholar
  2. 2.
    Scrosati B (1993) Applications of electroactive polymer. Chapman and Hall, LondonCrossRefGoogle Scholar
  3. 3.
    Bruce PG, Grey F, Shriver DF (1995) In: Bruce PG (ed) Solid state electrochemistry. Cambridge University Press, Cambridge, UKGoogle Scholar
  4. 4.
    Wieczorek W, Raducha D, Zalewska A, Stevens JR (1998) J Phys Chem B 102:8725CrossRefGoogle Scholar
  5. 5.
    Daniel MF, Desbat B, Lassegues JC (1988) Solid State Ionics 28:632CrossRefGoogle Scholar
  6. 6.
    Hashmi SA, Kumar A, Maurya KK, Chandra S (1990) J Phys D Appl Phys 23:1307CrossRefGoogle Scholar
  7. 7.
    Agrawal SL, Shukla PK (2000) Ind J Pure Appl Phys 38:53Google Scholar
  8. 8.
    Binesh N, Bhatt SV (1996) Solid State Ionics 86–88:609CrossRefGoogle Scholar
  9. 9.
    Donoso P, Gorecki W, Bertheir C, Defdini F, Poinsignon C, Armand MB (1988) Solid State Ionics 28:969CrossRefGoogle Scholar
  10. 10.
    Pandey S, Shukla PK, Agrawal SL (2008) In: Chowdari BVR, Kulkarni AR, Suthanthiraj A, Nalini B, Kalaiselvi N, Harikumar G (eds) Solid State Ionics, New materials for pollution free energy devices, p 627Google Scholar
  11. 11.
    Wieczorek W, Florjaniczyk Z, Stevens JR (1995) Electrochim Acta 40:2251CrossRefGoogle Scholar
  12. 12.
    Shukla PK, Agrawal SL (2000) Ionics 6:312CrossRefGoogle Scholar
  13. 13.
    Kumar B (2004) J Power Sources 135:215CrossRefGoogle Scholar
  14. 14.
    Chandra A, Srivastava PC, Chandra S (1995) J Mater Sci 30:3633. doi: CrossRefGoogle Scholar
  15. 15.
    Pandey GP, Hashmi SA, Agrawal RC (2008) Solid State Ionics 179:543CrossRefGoogle Scholar
  16. 16.
    Rajendran S, Sivakumar M, Subadevi R, Wu NL, Lee JY (2007) J Appl Polym Sci 103:3950CrossRefGoogle Scholar
  17. 17.
    Pandey K, Dwivedi MM, Tripathi M, Singh M, Agrawal SL (2008) Ionics 14:515CrossRefGoogle Scholar
  18. 18.
    Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Electrochim Acta 46:2457CrossRefGoogle Scholar
  19. 19.
    Castillo J, Chacon M, Castillo R, Vargas RA, Bueno PR, Vasela JA (2009) Ionics. doi: 11581-009-0320-x
  20. 20.
    Kremer F, Schonhals A (2003) Broad band dielectric spectroscopy. Springer-Verlag, BerlinCrossRefGoogle Scholar
  21. 21.
    Chand N, Jain D (2004) Bull Mater Sci 27:227CrossRefGoogle Scholar
  22. 22.
    Cullity BD (1978) Element of X-ray diffraction, 2nd edn. Anderson-Wesley, LondonGoogle Scholar
  23. 23.
    Williamson GK, Hall HW (1953) Acta Metall 1:22CrossRefGoogle Scholar
  24. 24.
    Awadhia A, Patel SK, Agrawal SL (2006) Prog Cryst Growth Charact Mater 52:61CrossRefGoogle Scholar
  25. 25.
    Kanapitsas A, Pissis P, Kotsilkova R (2002) J Non-Cryst Solids 305:204CrossRefGoogle Scholar
  26. 26.
    McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. John Wiley and Sons, New YorkGoogle Scholar
  27. 27.
    Ohta Y, Yasuda HJ (1994) Polym Sci Part B: Polym Phys 32:2241CrossRefGoogle Scholar
  28. 28.
    Wintersgill MC, Fontanella JJ (1989) In: McCallum JR, Vincent CA (eds) Polymer electrolyte reviews-2. Elsevier Applied Science, New YorkGoogle Scholar
  29. 29.
    Gray FM (1991) Solid polymer electrolyte, fundamental and applications. VCH, New YorkGoogle Scholar
  30. 30.
    Eyring H (1953) J Chem Phys 4:633Google Scholar
  31. 31.
    Glasston S, Laidler KJ, Eyring H (1941) The theory of rate process. McGraw Hill, New York, p 544Google Scholar
  32. 32.
    Senturk E (2004) J Solid State Chem 177:1508CrossRefGoogle Scholar
  33. 33.
    Moynihan CT, Boesch LP, Bose R (1973) Phys Chem Glasses 14:122Google Scholar
  34. 34.
    Elliot SR (1994) J Non-Cryst Solids 170:97CrossRefGoogle Scholar
  35. 35.
    Richter H, Wagner H (1998) Solid State Ionics 105:167CrossRefGoogle Scholar
  36. 36.
    Ghosh S, Ghosh A (2002) J Phys: Condens Matter 14:2531Google Scholar
  37. 37.
    Hodge IM, Ngai KL, Moynihan CT (2005) J Non-Cryst Solids 351:104CrossRefGoogle Scholar
  38. 38.
    Williams G, Watts DC (1971) Trans Faraday Soc 67:1322Google Scholar
  39. 39.
    Ross Macdonald J (2004) J Appl Phys 95:1849CrossRefGoogle Scholar
  40. 40.
    Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, LondonGoogle Scholar
  41. 41.
    Gupta V, Man Singh A (1984) Phys Rev B 49:1989CrossRefGoogle Scholar
  42. 42.
    Funke K (1992) Prog Solid State Chem 22:111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. L. Agrawal
    • 1
  • Markandey Singh
    • 1
  • Mridula Tripathi
    • 2
  • Mrigank Mauli Dwivedi
    • 3
  • Kamlesh Pandey
    • 3
    Email author
  1. 1.Department of PhysicsA.P.S. UniversityRewaIndia
  2. 2.Department of Chemistry, C.M.P. Degree CollegeUniversity of AllahabadAllahabadIndia
  3. 3.National Centre of Exp. Mineralogy and PetrologyUniversity of AllahabadAllahabadIndia

Personalised recommendations