Journal of Materials Science

, Volume 44, Issue 22, pp 6054–6059 | Cite as

Synthesis and characterization of Ag@polycarbazole nanoparticles and their novel optical behavior

  • Ahmad Zahoor
  • Teng Qiu
  • Jiangru Zhang
  • Xiaoyu LiEmail author


Ag@polycarbazole as a new 3D nanocomposite material was successfully fabricated using microwave polyol reduction method followed by cations assisted oxidative polymerization of carbazole. The material was characterized by transmission electron microscopes (TEM), scanning electron microscope (SEM), FT-IR, and Raman measurements. The results confirmed that Ag nanoparticles are entirely enclosed by 3,6 polycarbazole. The interfacial study was carried out by X-ray photoelectron spectroscopy, which revealed that Ag surface atoms are intact chemically and blue shifted due to polymer composite formation. The surface plasmon resonance (SPR) and photoluminescence (PL) behavior were found quite sensitive to surface composition of Ag nanoparticles, which is greatly influenced by cations dopant and enclosing polymer in contrary way. The polycarbazole played a contributive role to counterbalance the effect of cations dopant in SPR and PL behaviors along with displaying its luminescence in violet region.


Surface Plasmon Resonance Carbazole Peak Intensity Ratio Polycarbazole Polymer Encapsulation 



We thank NFSC (No. 50673008) and Young Teacher Scientific Research Foundation of BUCT (No. QN0611) for financial support.


  1. 1.
    Zhang JL, Liu ZM, Han B, Liu DX, Chen J, He J, Jiang T (2004) Chem Eur J 10:3531CrossRefGoogle Scholar
  2. 2.
    Kelly KL, Coronado E, Zhao LL, Schatze GC (2003) J Phys Chem B 107:668CrossRefGoogle Scholar
  3. 3.
    Clemenson S, Leonard D, Sage D, David L, Espuche E (2008) J Polym Sci A Polym Chem 46:2062CrossRefGoogle Scholar
  4. 4.
    Karim MR, Lim KT, Lee CJ, Bhuiyan MTI, Kin HJ, Park LS, Lee MS (2007) J Polym Sci A Polym Chem 45:574CrossRefGoogle Scholar
  5. 5.
    Biswas A, Morton Z, Kanzow J, Kruse J, Zaporojtchenko V, Faupel F, Strunskus T (2003) Nano Lett 3:69CrossRefGoogle Scholar
  6. 6.
    Oates TWH, Christalle E (2007) J Phys Chem C 111:182CrossRefGoogle Scholar
  7. 7.
    Muraviev DN (2005) Contrib Sci 3:19Google Scholar
  8. 8.
    Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Chem Mater 15:5019CrossRefGoogle Scholar
  9. 9.
    Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) Mater Chem Phys 93:117CrossRefGoogle Scholar
  10. 10.
    Hang CJ, Shieu FS, Hsieh WP, Chang TC (2006) J Appl Polym Sci 100:1457CrossRefGoogle Scholar
  11. 11.
    Khanna PK, Singh N, Charan S, Viswanath AK (2005) Mater Chem Phys 92:214CrossRefGoogle Scholar
  12. 12.
    Kuila BK, Garai A, Nandi AK (2007) Chem Mater 19:5443CrossRefGoogle Scholar
  13. 13.
    Feng XM, Huang H, Ye QQ, Zhu JJ, Hou WH (2007) J Phys Chem C 111:8463CrossRefGoogle Scholar
  14. 14.
    Chen AH, Kamata K, Nakagawa M, Yoda TI, Wang HQ, Li XY (2005) J Phys Chem B 109:18283CrossRefGoogle Scholar
  15. 15.
    Abthagir PS, Dhanalakshmi K, Saraswathi R (1998) Synth Met 93:1CrossRefGoogle Scholar
  16. 16.
    Verghese MM, Sundaresan NS, Basu T, Malhotra BD (1995) J Mater Sci Lett 14:401Google Scholar
  17. 17.
    Abe SY, Ugalde L, del Valle MA, Tregouet Y, Bernede JC (2007) J Braz Chem Soc 18:601CrossRefGoogle Scholar
  18. 18.
    Siove A, Ades D (2004) Polymer 45:4045CrossRefGoogle Scholar
  19. 19.
    Abthagir PS, Saraswathi R (2004) Thermochim Acta 424:25CrossRefGoogle Scholar
  20. 20.
    Komarneni S, Li DS, Newalkar B, Katsuki H, Bhalla AS (2002) Langmuir 18:5959CrossRefGoogle Scholar
  21. 21.
    Chen AH, Xie HX, Wang HQ, Li HY, Li XY (2006) Synth Met 156:346CrossRefGoogle Scholar
  22. 22.
    Miyazaki T, Kim SK, Hoshino K (2006) Chem Mater 18:5302CrossRefGoogle Scholar
  23. 23.
    Weng Z, Ni X (2008) J Appl Polym Sci 110:109CrossRefGoogle Scholar
  24. 24.
    Liu YC, Liu YC, Lin YT (2003) J Phys Chem B 107:11370CrossRefGoogle Scholar
  25. 25.
    Sarac AS, Tofail SAM, Serantoni M, Henry J, Cunnane VJ, McMonagle JB (2004) Appl Surf Sci 222:148CrossRefGoogle Scholar
  26. 26.
    Kim YK, Kim JW, Kim S (1996) Bull Korean Chem Soc 17:1154Google Scholar
  27. 27.
    Tang E, Tian BY, Zhang E, Fu CY, Cheng GX (2008) Chem Eng Commun 195:479CrossRefGoogle Scholar
  28. 28.
    Tsuji M, Nishizawa Y, Matsumoto K, Miyamae N, Tsuji T, Zhang Xu (2007) Colloids Surf A 293:185CrossRefGoogle Scholar
  29. 29.
    Kamat PV (2002) J Phys Chem B 106:7729CrossRefGoogle Scholar
  30. 30.
    Xu J, Han X, Liu H, Hu Y (2006) Colloids Surf A 273:179CrossRefGoogle Scholar
  31. 31.
    Hecht B (2004) Philos Trans R Soc Lond A 362:881CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ahmad Zahoor
    • 1
  • Teng Qiu
    • 1
  • Jiangru Zhang
    • 1
  • Xiaoyu Li
    • 1
    Email author
  1. 1.Key Laboratory for Nano-Materials, Ministry of Education, School of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations