Journal of Materials Science

, Volume 44, Issue 22, pp 6040–6053 | Cite as

Investigation of pseudocapacitance effect and frequency dependence of ac impedance in polyaniline–polyoxometalate hybrids

  • P. Chithra lekha
  • S. Subramanian
  • D. Pathinettam PadiyanEmail author


In polyaniline (PAni) prepared by interfacial polymerization, the conductivity increases with temperature due to the heating induced molecular arrangement which is favorable for charge delocalisation. The hydroxyl groups present in the polyoxometalates-doped PAni hybrids play a vital role in the conductivity mechanism of these materials. The appearance of pseudocapacitance loop at low frequency region is due to the temperature-assisted formation of oxonium ions and the protonation of polymer by this at the electrode–electrolyte interface and it is in agreement with the TGA studies. From the frequency dependant conductivity measurements at high temperatures, it is found that, PAni obeys the correlated barrier hopping model whereas its hybrids follow overlapping large polaron tunneling model.


Polyaniline Weight Loss Stage Frequency Exponent Aniline Oligomer Single Semi Circle 



One of the authors P.C. would like to thank CSIR, New Delhi for a Senior Research Fellowship. The authors acknowledge Department of Atomic Energy—Board of Research in Nuclear Sciences, Mumbai for the financial assistance (Project No: 2006/34/28-BRNS).


  1. 1.
    Ross Macdonald J, Johnson WB (2005) In: Barsoukov E, Ross Macdonald J (eds) Impedance spectroscopy: theory, experiment and applications, 2nd edn. Wiley, Hoboken, NJ, p 1Google Scholar
  2. 2.
    Kivelson S (1981) Phys Rev Lett 46:1344CrossRefGoogle Scholar
  3. 3.
    Bianchi RF, Leal Ferreira GF, Lepienski CM, Faria RM (1999) J Chem Phys 110:4602CrossRefGoogle Scholar
  4. 4.
    White AM, Slade RCT (2003) Synth Met 139:123CrossRefGoogle Scholar
  5. 5.
    Chithra lekha P, Balaji M, Subramanian S, Pathinettam Padiyan D (in press) Curr Appl PhysGoogle Scholar
  6. 6.
    Louis CW Baker, Diana C Glick (1998) Chem Rev 98:3Google Scholar
  7. 7.
    Nakamura O, Ogino I, Kodama T (1981) Solid State Ionics 3–4:347CrossRefGoogle Scholar
  8. 8.
    Doyle CD (1961) Anal Chem 3:77CrossRefGoogle Scholar
  9. 9.
    Jeevananda T, Siddaramaiah (2001) Thermochim Acta 376:51CrossRefGoogle Scholar
  10. 10.
    Bonanos N, Steele BCH, Butler EP (2005) In: Barsoukov E, Ross Macdonald J (eds) Impedance spectroscopy: theory, experiment and applications, 2nd edn. Wiley, Hoboken, NJ, p 205Google Scholar
  11. 11.
    Rudge A, Raistrick ID, Gottesfeld S, Ferraris JP (1994) Electrochim Acta 39:273CrossRefGoogle Scholar
  12. 12.
    Bayhan M, Hashemi T, Brikman AW (1997) J Mater Sci 32:6619. doi: CrossRefGoogle Scholar
  13. 13.
    Hu C-C, Chen E, Lin J-Y (2002) Electrochim Acta 47:2741Google Scholar
  14. 14.
    Hu C-C, Lin J-Y (2002) Electrochim Acta 47:4055CrossRefGoogle Scholar
  15. 15.
    Xiao Q, Zhou X (2003) Electrochim Acta 48:575CrossRefGoogle Scholar
  16. 16.
    Darowicki K, Kawula J (2004) Electrochim Acta 49:4829CrossRefGoogle Scholar
  17. 17.
    White AM, Slade RCT (2003) Electrochim Acta 48:2583CrossRefGoogle Scholar
  18. 18.
    Koleli F, Ropke T, Hamann CH (2003) Electrochim Acta 48:1595CrossRefGoogle Scholar
  19. 19.
    Hu C-C, Chu C-H (2001) J Electroanal Chem 503:105CrossRefGoogle Scholar
  20. 20.
    Liu X-X, Li Y-B, Bian L-J, Dou Y-Q, Huo Y-Q (2008) J Solid State Electrochem 12:909CrossRefGoogle Scholar
  21. 21.
    Kulkarni MV, Viswanath AK (2005) Sens Actuators B 107:791CrossRefGoogle Scholar
  22. 22.
    McGovern ST, Spinks GM, Wallace GG (2005) Sens Actuators B 107:657CrossRefGoogle Scholar
  23. 23.
    Passiniemi P, Vakiparta K (1995) Synth Met 69:237CrossRefGoogle Scholar
  24. 24.
    Maier J (1986) Ber Bunsenges Phys Chem 90:26CrossRefGoogle Scholar
  25. 25.
    Sunde S (2000) J Electroceram 5:153CrossRefGoogle Scholar
  26. 26.
    Jain S, Chakane S, Samui AB, Krishnamurthy VN, Bhoraskar SV (2003) Sens Actuators B 96:124CrossRefGoogle Scholar
  27. 27.
    Bishop A, Gouma P (2005) Rev Adv Mater Sci 10:209Google Scholar
  28. 28.
    Mioc U, Davidovic M, Tjapkin N, Colomban Ph, Novak A (1991) Solid State Ionics 46:103CrossRefGoogle Scholar
  29. 29.
    Agbor NE, Petty MC, Monkman AP (1995) Sens Actuators B 28:173CrossRefGoogle Scholar
  30. 30.
    Tsai Y-T, Whitmore DH (1982) Solid State Ionics 7:129CrossRefGoogle Scholar
  31. 31.
    Pike GE (1972) Phys Rev B 6:1572CrossRefGoogle Scholar
  32. 32.
    Extance P, Elliot SR, Davis EV (1985) Phys Rev B 32:8148CrossRefGoogle Scholar
  33. 33.
    Papathanassiou AN, Sakellis I, Grammatikakis J, Vitoratos E, Sakkopoulos S, Dalas E (2004) Synth Met 142:81CrossRefGoogle Scholar
  34. 34.
    Bilen B, Skarlatos Y, Aktas G (2005) J Non-Cryst Solids 351:2153CrossRefGoogle Scholar
  35. 35.
    Ammar AH, Farag E-SM, El-Ocker MM (2007) J Mater Sci: Mater Electron 18:469Google Scholar
  36. 36.
    Waki H, Kawamura J, Kamiyama T, Nakamura Y (2002) J Non-Cryst Solids 297:26CrossRefGoogle Scholar
  37. 37.
    Prabakar K, Narayandass SK, Mangalraj D (2003) Mater Chem Phys 78:809CrossRefGoogle Scholar
  38. 38.
    Elliot SR (1977) Philos Mag 36:1291CrossRefGoogle Scholar
  39. 39.
    Farid AM, Bekheet AE (2000) Vacuum 59:932CrossRefGoogle Scholar
  40. 40.
    Guintini JC, Zanchetta JN, Jullien D, Enolie R, Houenou P (1981) J Non-Cryst Solids 45:57CrossRefGoogle Scholar
  41. 41.
    Abou El-Hassan S, Hammad M (2001) Phys Status Solidi A 185:413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • P. Chithra lekha
    • 1
  • S. Subramanian
    • 2
  • D. Pathinettam Padiyan
    • 1
    Email author
  1. 1.Department of PhysicsManonmaniam Sundaranar UniversityTirunelveliIndia
  2. 2.Department of PhysicsThe MDT Hindu CollegeTirunelveliIndia

Personalised recommendations