Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 5980–5989 | Cite as

Assigning physical significance to the diffuse interface between terraces in phase-field modeling of steps on crystal surfaces: modeling step–step interaction

  • Igal G. Rasin
  • Simon BrandonEmail author
Interface Science

Abstract

We apply a modified phase-field modeling approach to the analysis of steps on a crystalline surface. Specifically, we are interested in capturing phenomena associated with the interaction between steps. To this end, we assign a physical significance to the form of the interfacial region between terraces (i.e. steps), inherent in the phase field approach, by tuning the multi-well potential to produce long-range interaction energies varying as 1/l2, where l is half the distance between steps. Resultant repulsive interactions between adjacent steps of the same sign are shown to affect step-flow kinetics in a manner consistent with curvature-driven interfacial relaxation. This phenomenon is further demonstrated to cause dislocation-driven (spiral) crystal growth kinetics to deviate, for large supersaturation and Burgers vector values, from the classical quadratic growth law. Attractive interactions between adjacent steps of opposite sign, also resulting from the finite interfacial width, are briefly explored particularly with respect to their possible impact on two-dimensional nucleation.

Keywords

Attractive Interaction Step Energy Crystalline Surface Spiral Growth Step Density 

Notes

Acknowledgements

The authors thank Dr. A. Virozub for his mathematical insight related to this article. This research was supported by THE ISRAEL SCIENCE FOUNDATION (Grant No. 1190/04).

References

  1. 1.
    Jayaprakash C, Rottman C, Saam WF (1984) Phys Rev B 30:6549CrossRefGoogle Scholar
  2. 2.
    Pimpinelli A, Villain J (1998) Physics of crystal growth. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Müller P, Saúl A (2004) Surf Sci Rep 54:157CrossRefGoogle Scholar
  4. 4.
    Israeli N, Kandel D (2000) Phys Rev B 62(20):13707CrossRefGoogle Scholar
  5. 5.
    Selke W, Duxbury PM (1995) Phys Rev B 52(24):17468CrossRefGoogle Scholar
  6. 6.
    Burton WK, Cabrera N, Frank FC (1951) Philos Trans R Soc A 243:299CrossRefGoogle Scholar
  7. 7.
    Fu ES, Johnson MD, Liu D-J, Weeks JD, Williams ED (1996) Phys Rev Lett 77(6):1091CrossRefGoogle Scholar
  8. 8.
    Dai B (2005) PhD thesis, The Graduate School of the University of MinnesotaGoogle Scholar
  9. 9.
    Karma A (2005) In: Yip S (ed) Handbook of materials modeling. Part B. Springer, DordrechtGoogle Scholar
  10. 10.
    Emmerich H (2008) Adv Phys 57(1):1CrossRefGoogle Scholar
  11. 11.
    Kim SG, Kim WT (2005) In: Yip S (ed) Handbook of materials modeling. Part B. Springer, DordrechtGoogle Scholar
  12. 12.
    Tang J, Xue X (2009) J Mater Sci 44:745. doi: https://doi.org/10.1007/s10853-008-3157-1 CrossRefGoogle Scholar
  13. 13.
    Krill KE III (2005) In: Yip S (ed) Handbook of materials modeling. Part B. Springer, DordrechtGoogle Scholar
  14. 14.
    McKenna IM, Gururajan MP, Voorhees PW (2009) J Mater Sci 44:2206. doi: https://doi.org/10.1007/s10853-008-3196-7 CrossRefGoogle Scholar
  15. 15.
    Liu F, Metiu H (1994) Phys Rev E 49(4):2601Google Scholar
  16. 16.
    Karma A, Plapp M (1998) Phys Rev Lett 81(20):4444CrossRefGoogle Scholar
  17. 17.
    Emmerich H (2003) Continuum Mech Thermodyn 15(2):197CrossRefGoogle Scholar
  18. 18.
    Pierre-Louis O (2003) Phys Rev E 68(2):021604CrossRefGoogle Scholar
  19. 19.
    Rätz A, Voigt A (2004) J Cryst Growth 266:278CrossRefGoogle Scholar
  20. 20.
    Yeon D-H, Cha P-R, Chung S-I, Yoon J-K (2004) Met Mater Int 9(1):67CrossRefGoogle Scholar
  21. 21.
    Redinger A, Ricken O, Kuhn P, Rätz A, Voigt A, Krug J, Michely T (2009) Phys Rev Lett 100:035506CrossRefGoogle Scholar
  22. 22.
    Yu Y-M, Liu B-G, Voigt A (2009) Phys Rev B 79(23):235317CrossRefGoogle Scholar
  23. 23.
    Graham R, Knuth D, Patashnik O (1994) Concrete mathematics: a foundation for computer science, 2 edn. Addison-Wesley, ReadingGoogle Scholar
  24. 24.
    van der Erden JP (1993) In: Hurle DTJ (ed) Handbook of crystal growth, vol 1a: bulk fundamentals, growth thermodynamics and kinetics. North-Holland, AmsterdamGoogle Scholar
  25. 25.
    Provatas N, Greenwood M, Athreya B, Goldenfeld N, Dantzig J (2005) Int J Mod Phys B 19(31):4525CrossRefGoogle Scholar
  26. 26.
    Wang S-L, Sekerka RF, Wheeler AA, Murray BT, Coriell SR, Brown RJ, McFadden GB (1993) Physica D 69:189CrossRefGoogle Scholar
  27. 27.
    Karma A, Rappel W-J (1998) Phys Rev E 57(4):4323CrossRefGoogle Scholar
  28. 28.
    Bennema P, Kern R, Simon B (1967) Phys Status Solidi 19(1):211CrossRefGoogle Scholar
  29. 29.
    Kwon Y-I, Dai B, Derby JJ (2007) Prog Cryst Growth Charact Mater 53:167CrossRefGoogle Scholar
  30. 30.
    Moseler M, Landman U (2000) Science 289(5482):1165CrossRefGoogle Scholar
  31. 31.
    Kang W, Landman U (2007) Phys Rev Lett 98(6):064504/1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTechnion–Israel Institute of TechnologyHaifaIsrael

Personalised recommendations