Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 5998–6010 | Cite as

Seventy-five years of superplasticity: historic developments and new opportunities

  • Terence G. LangdonEmail author
Review

Abstract

On this seventy-fifth anniversary of the first scientific report of true superplastic flow, it is appropriate both to look back and examine the major developments that established the present understanding of superplasticity and to look to the future to the new opportunities that are made possible by new processing techniques, based on the application of severe plastic deformation, that permit the production of fully dense bulk materials with submicrometer or nanometer grain sizes. This review proposes a minor modification to the present definition of superplasticity, it provides an overview of the current understanding of the flow of superplastic metals and ceramics and then it examines, and gives examples of, the new possibilities that are now available for achieving exceptional superplastic behavior.

Keywords

Strain Rate Sensitivity Stress Exponent Tensile Elongation Superplastic Flow Severe Plastic Deformation Processing 

Notes

Acknowledgement

This work was supported by the National Science Foundation of the United States under Grant No. DMR-0855009.

References

  1. 1.
    Chokshi AH, Mukherjee AK, Langdon TG (1993) Mater Sci Eng R10:237CrossRefGoogle Scholar
  2. 2.
    Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  3. 3.
    Barnes AJ (2007) J Mater Eng Perform 16:440CrossRefGoogle Scholar
  4. 4.
    Langdon TG (1982) Metall Trans 13A:689CrossRefGoogle Scholar
  5. 5.
    Langdon TG (2002) Metall Mater Trans 33A:249CrossRefGoogle Scholar
  6. 6.
    Langdon TG (2006) J Mater Sci 41:597. doi: https://doi.org/10.1007/s10853-006-6476-0 CrossRefGoogle Scholar
  7. 7.
    Langdon TG (2005) Z Metallkd 96:522CrossRefGoogle Scholar
  8. 8.
    Langdon TG (2005) Mater Trans 46:1951CrossRefGoogle Scholar
  9. 9.
    Nabarro FRN (1948) Report of a conference on strength of solids. The Physical Society, London, UK, p 75Google Scholar
  10. 10.
    Herring C (1950) J Appl Phys 21:437CrossRefGoogle Scholar
  11. 11.
    Coble RL (1963) J Appl Phys 34:1679CrossRefGoogle Scholar
  12. 12.
    Harper J, Dorn JE (1957) Acta Metall 5:654CrossRefGoogle Scholar
  13. 13.
    Kumar P, Kassner ME, Langdon TG (2007) J Mater Sci 42:409. doi: https://doi.org/10.1007/s10853-006-0782-4 CrossRefGoogle Scholar
  14. 14.
    Langdon TG (1994) Acta Metall Mater 42:2437CrossRefGoogle Scholar
  15. 15.
    Langdon TG, Wadsworth J (1991) In: Hori S, Tokizane M, Furushiro N (eds) Superplasticity in advanced materials—ICSAM-91. The Japan Society for Research on Superplasticity, Osaka, Japan, p 847Google Scholar
  16. 16.
    Woodford DA (1969) Trans ASM 62:291Google Scholar
  17. 17.
    Mohamed FA, Ahmed MMI, Langdon TG (1977) Metall Trans 8A:933CrossRefGoogle Scholar
  18. 18.
    Ahmed MMI, Langdon TG (1977) Metall Trans 8A:1832CrossRefGoogle Scholar
  19. 19.
    Weertman J (1957) J Appl Phys 28:1185CrossRefGoogle Scholar
  20. 20.
    Mohamed FA, Langdon TG (1974) Acta Metall 22:779CrossRefGoogle Scholar
  21. 21.
    Yavari P, Langdon TG (1982) Acta Metall 30:2181CrossRefGoogle Scholar
  22. 22.
    Mohamed FA (1978) Scr Metall 12:99CrossRefGoogle Scholar
  23. 23.
    Taleff EM, Henshall GA, Nieh TG, Lesuer DR, Wadsworth J (1998) Metall Mater Trans 29A:1081Google Scholar
  24. 24.
    Schroth JG (2004) In: Taleff EM, Friedman PA, Krajewski PE, Mishra RS, Schroth JG (eds) Advances in superplasticity and superplastic forming. The Minerals, Metals and Materials Society, Warrendale, p 9Google Scholar
  25. 25.
    Krajewski PE, Schroth JG (2007) Mater Sci Forum 551–552:3CrossRefGoogle Scholar
  26. 26.
    Kulas MA, Green WP, Taleff EM, Krajewski PE, McNelley TR (2005) Metall Mater Trans 36A:1249CrossRefGoogle Scholar
  27. 27.
    Kulas MA, Green WP, Taleff EM, Krajewski PE, McNelley TR (2006) Metall Mater Trans 37A:645CrossRefGoogle Scholar
  28. 28.
    Green WP, Kulas MA, Niazi A, Oishi K, Taleff EM, Krajewski PE, McNelley TR (2006) Metall Mater Trans 37A:2727CrossRefGoogle Scholar
  29. 29.
    Kulas MA, Krajewski PE, Bradley JR, Taleff EM (2007) Mater Sci Forum 551–552:129CrossRefGoogle Scholar
  30. 30.
    McNelley TR, Oh-ishi K, Zhilyaev AP, Swaminathan S, Krajewski PE, Taleff EM (2008) Metall Mater Trans 39A:50CrossRefGoogle Scholar
  31. 31.
    Taleff EM, Hector LG, Bradley JR, Verma R, Krajewski PE (2009) Acta Mater 57:2812CrossRefGoogle Scholar
  32. 32.
    McQueen HJ, Kassner ME (1988) In: Heikkenen HC, McNelley TR (eds) Superplasticity in aerospace. The Metallurgical Society, Warrendale, p 77Google Scholar
  33. 33.
    Taleff EM, Lesuer DR, Wadsworth J (1996) Metall Mater Trans 27A:343CrossRefGoogle Scholar
  34. 34.
    Otsuka M, Shibasaki S, Kikuchi M (1997) Mater Sci Forum 233–234:193Google Scholar
  35. 35.
    Langdon TG (1982) Met Sci 16:175CrossRefGoogle Scholar
  36. 36.
    Wadsworth J, Sherby OD (1980) Prog Mater Sci 25:35CrossRefGoogle Scholar
  37. 37.
    Srinivasan S, Ranganathan S (2004) India’s legendary wootz steel: an advanced material of the ancient world, The National Institute of Advanced Studies, The Indian Institute of Science, Bangalore, IndiaGoogle Scholar
  38. 38.
    Bengough GD (1912) J Inst Metals 7:123Google Scholar
  39. 39.
    Jenkins CHM (1928) J Inst Metals 40:21Google Scholar
  40. 40.
    Pearson CE (1934) J Inst Metals 54:111Google Scholar
  41. 41.
    Bochvar AA, Sviderskaya ZA (1945) Izvest Akad Nauk SSSR, Otdel Tekh Nauk (9):821Google Scholar
  42. 42.
    Langdon TG (1991) In: Hori S, Tokizane M, Furushiro N (eds) Superplasticity in advanced materials–ICSAM-91. The Japan Society for Research on Superplasticity, Osaka, Japan, p 3Google Scholar
  43. 43.
    Presnyakov AA (1969) Sverkhplastichnost′ Metallov i Splavov, Nauka, Alma-Ata, U.S.S.R. English translation: Marinkov CB (1976) Superplasticity of Metals and Alloys. The British Library, Wetherby, U.KGoogle Scholar
  44. 44.
    Langdon TG (2009) Mater Sci Eng A503:6CrossRefGoogle Scholar
  45. 45.
    Underwood EE (1962) J Metals 14:914Google Scholar
  46. 46.
    Backofen WA, Turner LR, Avery DH (1964) Trans Am Soc Met 57:980Google Scholar
  47. 47.
    Vaidya ML, Murty KL, Dorn JE (1973) Acta Metall 21:1615CrossRefGoogle Scholar
  48. 48.
    Arieli A, Yu AKS, Mukherjee AK (1980) Metall Trans 11A:181CrossRefGoogle Scholar
  49. 49.
    Mohamed FA, Langdon TG (1975) Acta Metall 23:117CrossRefGoogle Scholar
  50. 50.
    Rai G, Grant NJ (1975) Metall Trans 6A:385CrossRefGoogle Scholar
  51. 51.
    Mohamed FA, Langdon TG (1975) Philos Mag 32:697CrossRefGoogle Scholar
  52. 52.
    Ishikawa H, Mohamed FA, Langdon TG (1975) Philos Mag 32:1269CrossRefGoogle Scholar
  53. 53.
    Ma Y, Langdon TG (1994) Metall Mater Trans 25A:2309CrossRefGoogle Scholar
  54. 54.
    Grivas D, Morris JW, Langdon TG (1981) Scr Metall 15:229CrossRefGoogle Scholar
  55. 55.
    Langdon TG (1991) Mater Sci Eng A137:1CrossRefGoogle Scholar
  56. 56.
    Ball A, Hutchison MM (1969) Metal Sci J 3:1CrossRefGoogle Scholar
  57. 57.
    Ashby MF, Verrall RA (1973) Acta Metall 21:149CrossRefGoogle Scholar
  58. 58.
    Spingarn JR, Nix WD (1978) Acta Metall 26:1389CrossRefGoogle Scholar
  59. 59.
    Mohamed FA (1983) J Mater Sci 18:582. doi: https://doi.org/10.1007/BF00560647 CrossRefGoogle Scholar
  60. 60.
    Mohamed FA (1988) J Mater Sci Lett 7:215CrossRefGoogle Scholar
  61. 61.
    Chaudhury PK, Mohamed FA (1988) Acta Metall 36:1099CrossRefGoogle Scholar
  62. 62.
    Chaudhury PK, Sivaramakrishnan V, Mohamed FA (1988) Metall Trans 19A:2741CrossRefGoogle Scholar
  63. 63.
    Yan S, Earthman JC, Mohamed FA (1994) Philos Mag A 69:1017CrossRefGoogle Scholar
  64. 64.
    Park KT, Yan S, Mohamed FA (1995) Philos Mag A 72:891CrossRefGoogle Scholar
  65. 65.
    Duong K, Mohamed FA (1998) Acta Mater 46:4571CrossRefGoogle Scholar
  66. 66.
    Duong K, Mohamed FA (2000) Philos Mag A 80:2721CrossRefGoogle Scholar
  67. 67.
    Duong K, Mohamed FA (2001) Metall Mater Trans 32A:103CrossRefGoogle Scholar
  68. 68.
    Johnson RH (1970) Metall Rev 15:115Google Scholar
  69. 69.
    Ishikawa H, Bhat DG, Mohamed FA, Langdon TG (1977) Metall Trans 8A:523CrossRefGoogle Scholar
  70. 70.
    Miller DA, Langdon TG (1978) Metall Trans 9A:1688CrossRefGoogle Scholar
  71. 71.
    Chokshi AH, Langdon TG (1990) Acta Metall Mater 38:867CrossRefGoogle Scholar
  72. 72.
    Yousefiani A, Earthman JC, Mohamed FA (1998) Acta Mater 46:3557CrossRefGoogle Scholar
  73. 73.
    Yousefiani A, Mohamed FA (1999) Philos Mag A 79:1247CrossRefGoogle Scholar
  74. 74.
    Beeré W, Speight MV (1975) Metal Sci 9:190CrossRefGoogle Scholar
  75. 75.
    Hancock JW (1976) Metal Sci 10:319CrossRefGoogle Scholar
  76. 76.
    Chokshi AH, Langdon TG (1987) Acta Metall 35:1089CrossRefGoogle Scholar
  77. 77.
    Kim HC, Ahn TH, So CH, Ma Y, Zhao X, Langdon TG (1992) Scr Metall Mater 26:423CrossRefGoogle Scholar
  78. 78.
    Kim HC, Ahn TH, So CH, Ma Y, Zhao X, Langdon TG (1994) J Mater Res 9:2238CrossRefGoogle Scholar
  79. 79.
    Jiang XG, Earthman JC, Mohamed FA (1994) J Mater Sci 29:5499. doi: https://doi.org/10.1007/BF00349941 CrossRefGoogle Scholar
  80. 80.
    Yavari P, Langdon TG (1983) Mater Sci Eng 57:55CrossRefGoogle Scholar
  81. 81.
    Mukherjee AK (1971) Mater Sci Eng 8:83CrossRefGoogle Scholar
  82. 82.
    Gifkins RC (1976) Metall Trans 7A:1225CrossRefGoogle Scholar
  83. 83.
    Falk LKL, Howell PR, Dunlop GL, Langdon TG (1986) Acta Metall 34:1203CrossRefGoogle Scholar
  84. 84.
    Valiev RZ, Langdon TG (1993) Acta Metall Mater 41:949CrossRefGoogle Scholar
  85. 85.
    Bird JE, Mukherjee AK, Dorn JE (1959) In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructure. Israel Universities Press, Jerusalem, Israel, p 255Google Scholar
  86. 86.
    Cannon WR, Langdon TG (1988) J Mater Sci 23:1. doi: https://doi.org/10.1007/BF01174028 CrossRefGoogle Scholar
  87. 87.
    Mohamed FA, Langdon TG (1976) Scr Metall 10:759CrossRefGoogle Scholar
  88. 88.
    Bell RL, Graeme-Barber C, Langdon TG (1967) Trans Met Soc AIME 239:1821Google Scholar
  89. 89.
    Langdon TG (1972) Metall Trans 3:797CrossRefGoogle Scholar
  90. 90.
    Langdon TG (1981) J Mater Sci 16:2613. doi: https://doi.org/10.1007/BF01113604 CrossRefGoogle Scholar
  91. 91.
    Valiev RZ, Kaibyshev OA (1983) Acta Metall 31:2121CrossRefGoogle Scholar
  92. 92.
    Langdon TG (1994) Mater Sci Eng A174:225CrossRefGoogle Scholar
  93. 93.
    Wakai F, Sakaguchi S, Matsuno Y (1986) Adv Ceram Mater 1:259CrossRefGoogle Scholar
  94. 94.
    Wakai F, Kato H (1988) Adv Ceram Mater 3:71CrossRefGoogle Scholar
  95. 95.
    Maehara Y, Langdon TG (1990) J Mater Sci 25:2275. doi: https://doi.org/10.1007/BF00638018 CrossRefGoogle Scholar
  96. 96.
    Kim BN, Hiraga K, Morita K, Sakka Y (2001) Nature 413:288CrossRefGoogle Scholar
  97. 97.
    Kajihara K, Yoshizawa Y, Sakuma T (1995) Acta Metall Mater 43:1235CrossRefGoogle Scholar
  98. 98.
    Kim BN, Hiraga K, Morita K, Sakka Y, Yamada T (2002) Scr Mater 47:775CrossRefGoogle Scholar
  99. 99.
    Ma Y, Langdon TG (1994) Acta Metall Mater 42:2753CrossRefGoogle Scholar
  100. 100.
    Ma Y, Langdon TG (1996) Metall Mater Trans 27A:873CrossRefGoogle Scholar
  101. 101.
    Hiraga K, Nakano K, Suzuki TS, Sakka Y (1998) Scr Mater 39:1273CrossRefGoogle Scholar
  102. 102.
    Chen T, Mohamed FA, Mecartney ML (2006) Acta Mater 54:4415CrossRefGoogle Scholar
  103. 103.
    Morita K, Hiraga K (2002) Acta Mater 50:1075CrossRefGoogle Scholar
  104. 104.
    Muñoz A, Wakai F, Domínguez-Rodríguez A (2001) Scr Mater 44:2551CrossRefGoogle Scholar
  105. 105.
    Balasubramanian N, Langdon TG (2003) Scr Mater 48:599CrossRefGoogle Scholar
  106. 106.
    Balasubramanian N, Langdon TG (2005) Mater Sci Eng A409:46CrossRefGoogle Scholar
  107. 107.
    Berbon MZ, Langdon TG (1999) Acta Mater 47:2485CrossRefGoogle Scholar
  108. 108.
    Arzt E, Ashby MF, Verrall RA (1983) Acta Metall 31:1977CrossRefGoogle Scholar
  109. 109.
    Owen DM, Chokshi AH (1998) Acta Mater 46:667CrossRefGoogle Scholar
  110. 110.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  111. 111.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  112. 112.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  113. 113.
    Sakai G, Nakamura K, Horita Z, Langdon TG (2005) Mater Sci Eng A406:268CrossRefGoogle Scholar
  114. 114.
    Pippan R, Scheriau S, Hohenwarter A, Hafok M (2008) Mater Sci Forum 584–586:16CrossRefGoogle Scholar
  115. 115.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33CrossRefGoogle Scholar
  116. 116.
    Valiev RZ, Kaibyshev OA, Kuznetsov RI, Musalimov RSh, Tsenev NK (1988) Dokl Akad Nauk SSSR 301:864Google Scholar
  117. 117.
    Ma Y, Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Mater Trans JIM 37:336CrossRefGoogle Scholar
  118. 118.
    Higashi K, Mabuchi M, Langdon TG (1996) ISIJ Int 36:1423CrossRefGoogle Scholar
  119. 119.
    Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scr Mater 37:1945CrossRefGoogle Scholar
  120. 120.
    Komura S, Horita Z, Furukawa M, Nemoto M, Langdon TG (2001) Metall Mater Trans 32A:707Google Scholar
  121. 121.
    Sakai G, Horita Z, Langdon TG (2004) Mater Trans 45:3079CrossRefGoogle Scholar
  122. 122.
    Akamatsu H, Fujinami T, Horita Z, Langdon TG (2001) Scr Mater 44:759CrossRefGoogle Scholar
  123. 123.
    Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG (2000) Acta Mater 48:3633CrossRefGoogle Scholar
  124. 124.
    Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782. doi: https://doi.org/10.1007/s10853-006-0954-2 CrossRefGoogle Scholar
  125. 125.
    Horita Z, Matsubara K, Makii K, Langdon TG (2002) Scr Mater 47:255CrossRefGoogle Scholar
  126. 126.
    Matsubara K, Miyahara Y, Horita Z, Langdon TG (2003) Acta Mater 51:3073CrossRefGoogle Scholar
  127. 127.
    Furui M, Kitamura H, Anada H, Langdon TG (2007) Acta Mater 55:1083CrossRefGoogle Scholar
  128. 128.
    Figueiredo RB, Langdon TG (2008) Adv Eng Mater 10:37CrossRefGoogle Scholar
  129. 129.
    Figueiredo RB, Langdon TG (2009) Mater Sci Eng A501:105CrossRefGoogle Scholar
  130. 130.
    Figueiredo RB, Langdon TG (2009) Scr Mater 61:84CrossRefGoogle Scholar
  131. 131.
    Harai Y, Kai M, Kaneko K, Horita Z, Langdon TG (2008) Mater Trans 49:76CrossRefGoogle Scholar
  132. 132.
    Mishra RS, Valiev RZ, McFadden SX, Islamgaliev RK, Mukherjee AK (2001) Philos Mag A 81:37CrossRefGoogle Scholar
  133. 133.
    Kai M, Horita Z, Langdon TG (2008) Mater Sci Eng A488:117CrossRefGoogle Scholar
  134. 134.
    Harai Y, Edalati K, Horita Z, Langdon TG (2009) Acta Mater 57:1147CrossRefGoogle Scholar
  135. 135.
    Morrison WB (1968) Trans Met Soc AIME 242:2221Google Scholar
  136. 136.
    Horita Z, Langdon TG (2008) Scr Mater 58:1029CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations