Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4710–4714 | Cite as

A versatile approach for the fabrication of Au hollow nanoparticles based on poly(styrene-co-2-aminoethyl methacrylate) template

  • Xiaofeng Wang
  • Yiwang ChenEmail author
  • Weihua ZhouEmail author
  • Zhongfu Huang
  • Zupeng Guo
  • Yuehui Hu
Article

Abstract

The hollow Au nanospheres were successfully prepared by the template method. The poly(styrene-co-2-aminoethyl methacrylate hydrochloride) (P(St-co-AEMH)) nanoparticles synthesized by the emulsion polymerization were used as the templates. After coating by Au colloidal nanoparticles and the formation of Au shells, the interior templates were etched out by sulfuric acid, leading to the formation of Au hollow nanospheres. The structure and morphology of the nanoparticles and hollow nanospheres were carefully investigated by the fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), wide-angle X-ray diffractometer (WAXD), and thermal gravimetric analysis (TGA) techniques.

Keywords

Emulsion Polymerization Thermal Gravimetric Analysis Shell Nanoparticles Hollow Nanospheres Polymer Template 

Notes

Acknowledgements

Financial support for this study was provided by the Natural Science Foundation of Jiangxi Province (2007GZC1727 and 2008GQH0046), Jiangxi Provincial Department of Education, and Program for Innovative Research Team of Nanchang University, Program for Innovative Research Team in University of Jiangxi Province, and Program for Changjiang Scholars and Innovative Research Team in University (IRT0730). The author would like to thank Mr. S. D. Li from Department of Physics of Fujian Normal University for technique assistances.

References

  1. 1.
    Kim SW, Kim M, Lee WY, Hyeon T (2002) J Am Chem Soc 124:7642CrossRefGoogle Scholar
  2. 2.
    Li ZZ, Wen LX, Shao L, Chen JF (2004) J Control Release 98:245CrossRefGoogle Scholar
  3. 3.
    Zhang LH, Yang HQ, Xie XL, Zhang FH, Li L (2009) J Alloys Compd 473:65CrossRefGoogle Scholar
  4. 4.
    Park SJ, Jin FL, Lee CJ (2005) Mater Sci Eng A 402:335CrossRefGoogle Scholar
  5. 5.
    Mulvihill MJ, Rupert BL, He RR, Hochbaum A, Amold J, Yang PD (2005) J Am Chem Soc 127:16040CrossRefGoogle Scholar
  6. 6.
    Lu W, Chen M, Wu LM (2008) J Colloid Interface Sci 324:220CrossRefGoogle Scholar
  7. 7.
    Ge JJ, Xing W, Xue XZ, Liu CP, Lu TH, Liao JH (2007) J Phys Chem C 111:17305CrossRefGoogle Scholar
  8. 8.
    Jeong U, Wang YL, Ibisate M, Xia YN (2005) Adv Funct Mater 15:1907CrossRefGoogle Scholar
  9. 9.
    Park JH, Kim YG, Oh C, Shin S, Kim YC, Oh SG, Kong SH (2005) Mater Res Bull 40:271CrossRefGoogle Scholar
  10. 10.
    Chen ZT, Gao L (2008) Cryst Growth Des 8:460CrossRefGoogle Scholar
  11. 11.
    Lai M, Riley DJ (2008) J Colloid Interface Sci 323:203CrossRefGoogle Scholar
  12. 12.
    Schwartzberg AM, Olson TY, Talley CE (2006) J Phys Chem B 110:19935CrossRefGoogle Scholar
  13. 13.
    Ding S, Zhang C, Yang M (2006) Polymer 47:8360CrossRefGoogle Scholar
  14. 14.
    Chen YW, Kang ET, Neoh KG, Greiner A (2005) Adv Funct Mater 15:113CrossRefGoogle Scholar
  15. 15.
    Gittins DI, Caruso F (2001) J Phys Chem B 105:6846CrossRefGoogle Scholar
  16. 16.
    Liu GY, Zhang H, Yang XL, Wang YM (2007) Polymer 48:5896CrossRefGoogle Scholar
  17. 17.
    Lu Y, McLellan J, Xia Y (2004) Langmuir 20:3464CrossRefGoogle Scholar
  18. 18.
    Murthy VS, Cha JN, Stucky GD, Wong MS (2004) J Am Chem Soc 126:5292CrossRefGoogle Scholar
  19. 19.
    Jana NR, Gearheart L, Murphy CJ (2001) Langmuir 17:6782CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Polymers/Institute for Advanced StudyNanchang UniversityNanchangChina
  2. 2.College of Chemical EngineeringQinghai UniversityXiningChina
  3. 3.College of Mechanical and Electronic EngineeringJingdezhen Ceramic InstituteJingdezhenChina

Personalised recommendations