Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4758–4762 | Cite as

Principles of grain refinement in magnesium alloys processed by equal-channel angular pressing

  • Roberto B. Figueiredo
  • Terence G. LangdonEmail author
Letter

Processing through the application of severe plastic deformation (SPD) provides a useful tool for introducing very significant grain refinement in bulk solids [1]. Although several SPD techniques are now available, processing by equal-channel angular pressing (ECAP) is especially attractive because it is easily scaled-up for use with large samples [2]. Numerous experiments have shown that processing by ECAP produces ultrafine-grain structures in a range of fcc metals, including Al and Cu, and this led to the development of a model for grain refinement based on the formation of an elongated array of subgrains or cells in the first pass of ECAP, the further development of elongated arrays in subsequent passes and the evolution of this structure into an array of equiaxed grains separated by high-angle grain boundaries [3]. In practice, there is excellent agreement between this model of grain refinement for fcc metals [3], the shearing patterns predicted in ECAP processing [4] and...

Keywords

Magnesium Alloy AZ31 Alloy Channel Angle ECAP Processing Severe Plastic Deformation Technique 

Notes

Acknowledgements

One of the authors (RBF) was supported by a CAPES/Fulbright Scholarship. This work was supported by the U.S. Army Research Office under Grant No. W911NF-08-1-0201.

References

  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  3. 3.
    Langdon TG (2007) Mater Sci Eng A 462:3CrossRefGoogle Scholar
  4. 4.
    Furukawa M, Horita Z, Langdon TG (2002) Mater Sci Eng A 332:97CrossRefGoogle Scholar
  5. 5.
    Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon TG (2004) Acta Mater 52:1387CrossRefGoogle Scholar
  6. 6.
    Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon TG (2006) Mater Sci Eng A 420:79CrossRefGoogle Scholar
  7. 7.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:4733CrossRefGoogle Scholar
  8. 8.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  9. 9.
    Yamashita A, Horita Z, Langdon TG (2001) Mater Sci Eng A 300:142CrossRefGoogle Scholar
  10. 10.
    Horita Z, Matusbara K, Makii K, Langdon TG (2002) Scr Mater 47:255CrossRefGoogle Scholar
  11. 11.
    Matsubara K, Miyahara Y, Horita Z, Langdon TG (2003) Acta Mater 51:3073–3084CrossRefGoogle Scholar
  12. 12.
    Matsubara K, Miyahara Y, Horita Z, Langdon TG (2004) Metall Mater Trans A 35:1735CrossRefGoogle Scholar
  13. 13.
    Lin HK, Huang JC, Langdon TG (2005) Mater Sci Eng A 402:250CrossRefGoogle Scholar
  14. 14.
    Furui M, Xu C, Aida T, Inoue M, Anada H, Langdon TG (2005) Mater Sci Eng A 410–411:439CrossRefGoogle Scholar
  15. 15.
    Miyahara Y, Matsubara K, Horita Z, Langdon TG (2005) Metall Mater Trans A 36:1705CrossRefGoogle Scholar
  16. 16.
    Miyahara Y, Horita Z, Langdon TG (2006) Mater Sci Eng A 420:240CrossRefGoogle Scholar
  17. 17.
    Figueiredo RB, Langdon TG (2006) Mater Sci Eng A 430:151CrossRefGoogle Scholar
  18. 18.
    Xia K, Wang JT, Wu X, Chen G, Gurvan M (2005) Mater Sci Eng A 410–411:324CrossRefGoogle Scholar
  19. 19.
    Lapovok R, Estrin Y, Popov MV, Langdon TG (2008) Adv Eng Mater 10:429CrossRefGoogle Scholar
  20. 20.
    Furui M, Kitamura H, Anada H, Langdon TG (2007) Acta Mater 55:1083CrossRefGoogle Scholar
  21. 21.
    Figueiredo RB, Cetlin PR, Langdon TG (2007) Acta Mater 55:4769CrossRefGoogle Scholar
  22. 22.
    Kang F, Wang JT, Peng Y (2008) Mater Sci Eng A 487:68CrossRefGoogle Scholar
  23. 23.
    Mussi A, Blandin JJ, Salvo L, Rauch EF (2006) Acta Mater 54:3801CrossRefGoogle Scholar
  24. 24.
    Ding SX, Chang CP, Kao PW (2009) Metall Mater Trans A 40:415CrossRefGoogle Scholar
  25. 25.
    Berbon PB, Furukawa M, Horita Z, Nemoto M, Langdon TG (1999) Metall Mater Trans A 30:1989CrossRefGoogle Scholar
  26. 26.
    Figueiredo RB, Langdon TG (2009) Mater Sci Eng A 501:105CrossRefGoogle Scholar
  27. 27.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143CrossRefGoogle Scholar
  28. 28.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328CrossRefGoogle Scholar
  29. 29.
    Galiyev A, Kaibyshev R, Gottstein G (2001) Acta Mater 49:1199CrossRefGoogle Scholar
  30. 30.
    Koike J (2003) Mater Sci Forum 419–422:189CrossRefGoogle Scholar
  31. 31.
    Beer AG, Barnett MR (2006) Mater Sci Eng A 423:292CrossRefGoogle Scholar
  32. 32.
    Ion SE, Humphreys FJ, White SH (1982) Acta Metall 30:1909CrossRefGoogle Scholar
  33. 33.
    Barnett MR (2003) Mater Trans 44:571CrossRefGoogle Scholar
  34. 34.
    Hakamada M, Watazu A, Saito N, Iwasaki H (2009) Mater Trans 50:711CrossRefGoogle Scholar
  35. 35.
    Spigarelli S, El Mehtedi M, Cabibbo M, Evangelista E, Kaneko J, Jäger A, Gartnerova V (2007) Mater Sci Eng A 462:197CrossRefGoogle Scholar
  36. 36.
    Su CW, Lu L, Lai MO (2006) Mater Sci Eng A 434:227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations