Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4754–4757 | Cite as

Charge compensation in an irradiation-induced phase of δ-Sc4Zr3O12

  • Michael W. BlairEmail author
  • Mark R. Levy
  • Robin W. Grimes
  • Blas P. Uberuaga
  • Chao Jiang
  • James A. Valdez
  • Josh J. Williams
  • Ming Tang
  • Christopher R. Stanek
  • Kurt E. Sickafus
Letter

Robust materials that are durable under irradiation are needed by a resurgent nuclear industry, and oxide ceramics are leading candidates for a number of nuclear applications, such as the storage of nuclear waste [1]. The delta (δ) phase of Sc4Zr3O12 is an example of an oxide that has recently been shown to have excellent radiation tolerance/amorphization resistance [2, 3]. It has been proposed that the origin of the pronounced radiation tolerance in such materials is linked to crystal structure characteristics [3]. The structure of δ-Sc4Zr3O12 is similar to that of fluorite (CaF2), but with rhombohedral (not cubic) symmetry (space group \( R\bar{3} \)

Keywords

Sc2O3 Defect Volume Charge Compensation Mechanism Generalize Gradient Approximation Approximation Perform Density Functional Theory 

Notes

Acknowledgements

This work was sponsored by two programs from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (OBES), Division of Materials Sciences and Engineering.

References

  1. 1.
    Weber WJ, Ewing RC, Catlow CRA, de la Rubia TD, Hobbs LW, Kinoshita C, Matzke H, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) J Mater Res 13:1434CrossRefGoogle Scholar
  2. 2.
    Valdez JA, Tang M, Sickafus KE (2006) Nucl Instr Methods Phys Res Sect B 250:148CrossRefGoogle Scholar
  3. 3.
    Sickafus KE, Grimes RW, Valdez JA, Cleave A, Tang M, Ishimaru M, Corish SM, Stanek CR, Uberuaga BP (2007) Nat Mater 6:217CrossRefGoogle Scholar
  4. 4.
    Hahn T (ed) (1983) International tables for crystallography, vol A: space-group symmetry. Reidel, Dordrecht, NetherlandsGoogle Scholar
  5. 5.
    Lian J, Wang L, Chen J, Sun K, Ewing RC, Matt Farmer J, Boatner LA (2003) Acta Mater 51:1493CrossRefGoogle Scholar
  6. 6.
    Ishimaru M, Hirotsu Y, Tang M, Valdez JA, Sickafus KE (2007) J Appl Phys 102:063532CrossRefGoogle Scholar
  7. 7.
    Sickafus KE, Ishimaru M, Hirotsu Y, Usov IO, Valdez JA, Hosemann P, Johnson AL, Thao TT (2008) Nucl Instr Methods Phys Res B 266:2892CrossRefGoogle Scholar
  8. 8.
    Morterra C, Giamello E, Orio L, Volante M (1990) J Phys Chem 94:3111CrossRefGoogle Scholar
  9. 9.
    Qin Z, Xinping W, Tianxi C (2004) Appl Surf Sci 225:7CrossRefGoogle Scholar
  10. 10.
    Occhiuzzi M, Cordischi D, Dragone R (2002) J Phys Chem B 106:12464CrossRefGoogle Scholar
  11. 11.
    Abraham MM, Boatner LA, Ramey JO, Rappaz M (1984) J Chem Phys 81:5362CrossRefGoogle Scholar
  12. 12.
    Poole CP (1983) Electron spin resonance: a comprehensive treatise on experimental techniques. Dover, Mineola, NYGoogle Scholar
  13. 13.
    Deisenhofer J, von Nidda HAK, Loidl A, Sampathkumaran EV (2003) Solid State Commun 125:327CrossRefGoogle Scholar
  14. 14.
    Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I, Hosono H (2003) Science 301:626CrossRefGoogle Scholar
  15. 15.
    Kodera H (1970) J Phys Soc Jpn 28:89CrossRefGoogle Scholar
  16. 16.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  17. 17.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
  18. 18.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  19. 19.
    Kresse G, Furthmuller J (1996) Phys Rev B (Condens Matter) 54:11169CrossRefGoogle Scholar
  20. 20.
    Kresse G, Joubert D (1999) Phys Rev B (Condens Matter) 59:1758CrossRefGoogle Scholar
  21. 21.
    Blochl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  22. 22.
    Monkhorst HJ, Pack JD (1976) Phys Rev B (Solid State) 13:5188CrossRefGoogle Scholar
  23. 23.
    Emeline AV, Petrova SV, Ryabchuk VK, Serpone N (1998) Chem Mater 10:3484CrossRefGoogle Scholar
  24. 24.
    Bader RFW (1190) Atoms in molecules—a quantum theory. Oxford University Press, OxfordGoogle Scholar
  25. 25.
    Jiang C, Srinivasan SG, Caro A, Maloy SA (2008) J Appl Phys 103:043502CrossRefGoogle Scholar
  26. 26.
    Zacate MO, Minervini L, Bradfield DJ, Grimes RW, Sickafus KE (2000) Solid State Ionics 128:243CrossRefGoogle Scholar
  27. 27.
    Levy MR, Steel BCH, Grimes RW (2004) Solid State Ionics 175:349CrossRefGoogle Scholar
  28. 28.
    Patel AP, Levy MR, Grimes RW, Gaume RM, Feigelson RS, McClellan KJ, Stanek CR (2008) Appl Phys Lett 93:191902CrossRefGoogle Scholar
  29. 29.
    Shannon RD (1976) Acta Crystallogr A A32:751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael W. Blair
    • 1
    Email author
  • Mark R. Levy
    • 2
  • Robin W. Grimes
    • 3
  • Blas P. Uberuaga
    • 4
  • Chao Jiang
    • 4
  • James A. Valdez
    • 4
  • Josh J. Williams
    • 4
  • Ming Tang
    • 4
  • Christopher R. Stanek
    • 4
  • Kurt E. Sickafus
    • 4
  1. 1.Earth and Environmental Science DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.British Energy plc.GloucesterUK
  3. 3.Department of MaterialsImperial College LondonLondonUK
  4. 4.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations