Tunable ZnO nanostructures for ethanol sensing
- 165 Downloads
- 20 Citations
Abstract
In this study, ZnO nanostructures with different morphologies including nanorods, nanowires, and nanobrushes were synthesized by a simple hydrothermal process without using any structure-directing reagent. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The influence of the preparation parameters on the morphology of ZnO is discussed. Gas-sensing properties of the materials were investigated. The results reveal that all the prepared nanostructured ZnO powders show high response to ethanol, among which, the three-dimensional nanobrushes show the highest response, demonstrating excellent potentiality for ethanol sensors.
Keywords
Al2O3 Tube Hexagonal Nanorods Oxygen Adsorption QuantityNotes
Acknowledgements
The financial support of this study is by the Research Fund for the Doctoral Program of Higher Education (RFDP) under Grant 20070561008 and Natural Science Foundation of China under Grant 20773041 is greatly acknowledged.
References
- 1.Hara K, Horiguchi T, Kinoshita T, Sayama K, Sugihara H, Arakawa H (2000) Sol Energy Mater Sol Cells 64:115CrossRefGoogle Scholar
- 2.Dong L, Jiao J, Tuggle DW, Petty JM, Elliff SA (2003) Appl Phys Lett 82:1096CrossRefGoogle Scholar
- 3.Zhu BL, Xie CS, Wang AH, Wu J, Wu R, Liu J (2007) J Mater Sci 42:5416. doi: https://doi.org/10.1007/s10853-006-0768-2 CrossRefGoogle Scholar
- 4.Agarwal G, Speyer RF (1998) J Electrochem Soc 145:2920CrossRefGoogle Scholar
- 5.Kind H, Yan H, Messer B, Law M, Yang P (2002) Adv Mater 14:158CrossRefGoogle Scholar
- 6.Xu JQ, Chen YP, Chen DY, Shen JN (2006) Sens Actuators B 113:526CrossRefGoogle Scholar
- 7.Xu JQ, Chen YP, Li YD, Shen JN (2005) J Mater Sci 40:2919. doi: https://doi.org/10.1007/s10853-005-2435-4 CrossRefGoogle Scholar
- 8.Liao L, Lu HB, Li JC, He H, Wang DF, Fu DJ, Liu C (2007) J Phys Chem C 111:1900CrossRefGoogle Scholar
- 9.Rout CS, Krishna SH, Vivekchand SRC, Govindaraj A, Rao CNR (2006) Chem Phys Lett 418:586CrossRefGoogle Scholar
- 10.Hsueh TJ, Hsu CL, Chang SJ, Chen IC (2007) Sens Actuators B 126:473CrossRefGoogle Scholar
- 11.Chen YJ, Zhu CL, Xiao G (2008) Sens Actuators B 129:639CrossRefGoogle Scholar
- 12.Zhang Y, Xu JQ, Xiang Q, Li H, Pan QY, Xu PC (2009) J Phys Chem C 113:3430CrossRefGoogle Scholar
- 13.Zhang ZQ, Jiang CB, Li SX, Mao SX (2008) J Cryst Growth 277:321CrossRefGoogle Scholar
- 14.Tien LC, Pearton SJ, Norton DP, Ren F (2008) J Mater Sci 43:6925. doi: https://doi.org/10.1007/s10853-008-2988-0 CrossRefGoogle Scholar
- 15.Zheng MJ, Zhang LD, Li GH, Shen WZ (2002) Chem Phys Lett 363:123CrossRefGoogle Scholar
- 16.Wahab R, Ansari SG, Kim YS, Seo HK, Shin HS (2007) Appl Surf Sci 253:7622CrossRefGoogle Scholar
- 17.Li J, Srinivasan S, He GN, Kang JY, Wu ST, Ponce FA (2008) J Cryst Growth 310:599CrossRefGoogle Scholar
- 18.Kale RB, Lu SY (2007) J Phys: Condens Mater 19:096209Google Scholar
- 19.Zhang TR, Dong WJ, Brewer MK, Konar S, Njabon RN, Tian ZR (2006) J Am Chem Soc 128:10960CrossRefGoogle Scholar
- 20.Gao XP, Zheng ZF, Zhu HY, Pan GL, Bao JL, Wu F, Song DY (2004) Chem Commun 12:1428CrossRefGoogle Scholar
- 21.Zhang WH, Zhang WD (2008) Sens Actuators B 134:403CrossRefGoogle Scholar
- 22.Li WJ, Shi EW, Zhong WZ, Yin ZW (2008) J Cryst Growth 203:186CrossRefGoogle Scholar
- 23.Sounart TL, Liu J, Voigt JA, Huo M, Spoerke ED, McKenzie B (2007) J Am Chem Soc 129:15786CrossRefGoogle Scholar
- 24.Sounart TL, Liu J, Voigt JA, Hsu JWP, Spoerke ED, Tian Z, Jiang YB (2006) Adv Funct Mater 16:335CrossRefGoogle Scholar
- 25.Lao JY, Wen JG, Ren ZF (2000) Nano Lett 2:1287CrossRefGoogle Scholar
- 26.Zhang WD (2006) Nanotechnology 17:1036CrossRefGoogle Scholar
- 27.Xu JQ, Pan QY, Shun YA, Tian ZZ (2000) Sens Actuators B 66:277CrossRefGoogle Scholar
- 28.Lv YZ, Guo L, Xu HB, Chu XF (2007) Physica E 36:102CrossRefGoogle Scholar
- 29.Si SF, Li CH, Wang X, Peng Q, Li YD (2006) Sens Actuators B 119:52CrossRefGoogle Scholar