Journal of Materials Science

, Volume 44, Issue 17, pp 4653–4660 | Cite as

Structure and microstructure of leached Raney-type Al–Ni powders

  • U. Dahlborg
  • C. M. Bao
  • M. Calvo-DahlborgEmail author
  • F. Devred
  • B. E. Nieuwenhuys


The structure and microstructure of some leached Raney-type Al–Ni alloys of different compositions have been investigated by neutron diffraction and by small-angle neutron scattering. It was found that all alloys contain a crystalline face-centred cubic (fcc) Ni phase as well as an Al3Ni2 phase, the amount of which is decreasing with increasing Al content of the initial alloy. Both the Ni and the Al3Ni2 phases are conjectured to be non-stoichiometric. There is no indication of any other crystalline phase. The size of the Ni crystallites in all leached alloys has been found to be of the order of 30 Å, whereas the size of the Al3Ni2 ones varies with initial alloy composition and is found to be in the range of 100–250 Å. The change in structure by doping the initial alloys with small amounts of Ti and Cr is after leaching marginal.


Neutron Diffraction Al3Ni2 Heavy Water Bayerite Initial Alloy 



This study is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland, and has been supported by the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures, Contract no.: RII3-CT-2003-505925. During the HRPT experiments as well as for the data analysis the authors were very much profiting from the assistance of Denis Sheptyakov and during the measurements on SANS-II the attention of Thomas Geue was very much appreciated. This research is furthermore supported by the IMPRESS Integrated Project (Contract NMP3-CT-2004-500635) that is co-funded by the European Commission in the 6th Framework Programme, the European Space Agency and the Swiss Government.


  1. 1.
    Jarvis DJ, Voss D (2005) Mater Sci Eng A 413–414:583CrossRefGoogle Scholar
  2. 2.
    Fouilloux P, Martin GA, Renouprez AJ, Moraweck B, Imelik B, Prettre M (1972) J Catal 25:212CrossRefGoogle Scholar
  3. 3.
    Smith AJ, Trimm DL (2005) Ann Rev Mater Res 35:127CrossRefGoogle Scholar
  4. 4.
    Edelstein AS, Everett RK, Richardson GR, Qadri SB, Foley JC, Perepezko JH (1995) Mater Sci Eng A 195:13CrossRefGoogle Scholar
  5. 5.
    Makhlouf SA, Ivanov E, Sumiyama K, Suzuki K (1992) J Alloys Compd 187:L1CrossRefGoogle Scholar
  6. 6.
    Vijay M, Selvarajan V (2008) J Mater Process Technol 202:112CrossRefGoogle Scholar
  7. 7.
    Warlimont H, Kühn U, Mattern N (1997) Mater Sci Eng A 226–228:900CrossRefGoogle Scholar
  8. 8.
    Wang R, Lu Z, Ko T (2001) J Mater Sci 36:5649. doi: CrossRefGoogle Scholar
  9. 9.
    Lei H, Song Z, Tan D, Bao X, Mu X, Zong B, Min E (2001) Appl Catal A 214:69CrossRefGoogle Scholar
  10. 10.
    Jobst K, Warlimont H (2002) J Catal 207:23CrossRefGoogle Scholar
  11. 11.
    Hu H, Qiao M, Wang S, Fan K, Li H, Zong B, Zhang X (2004) J Catal 221:612CrossRefGoogle Scholar
  12. 12.
    Dutta H, Pradhan SK, De M (2002) Mater Chem Phys 74:167CrossRefGoogle Scholar
  13. 13.
    Sharafutdinov MR, Korchagin MA, Shkodich NF, Tolochko BP, Tsygankov PA, Yagubova IYu (2007) Nucl Instrum Methods Phys Res A 575:149CrossRefGoogle Scholar
  14. 14.
    Petró J, Bóta A, László K, Beyer H, Kálmán E, Dódony I (2000) Appl Catal A 190:73CrossRefGoogle Scholar
  15. 15.
    Ham HC, Maganyuk AP, Han J, Yoon SP, Nam SW, Lim TH, Hong SA (2007) J Alloys Compd 446:733CrossRefGoogle Scholar
  16. 16.
    Henein H (2002) Mater Sci Eng A 236:92CrossRefGoogle Scholar
  17. 17.
    Devred F, Hoffer BW, Sloof WG, Kooyman PJ, van Langeveld AD, Zandbergen HW (2003) Appl Catal A 244:291CrossRefGoogle Scholar
  18. 18.
    Hoffer BW, Crezee E, Devred F, Mooijman PRM, Sloof WG, Kooyman PJ, van Langeveld AD, Kapteijn F, Moulijn JA (2003) Appl Catal A 253:437CrossRefGoogle Scholar
  19. 19.
    Devred F, Gieske AH, Adkins N, Dahlborg U, Bao CM, Calvo-Dahlborg M, Bakker JW, Nieuwenhuys BE (2009) Appl Catal A Gen 356:154CrossRefGoogle Scholar
  20. 20.
    Tong MM, Browne DJ (2008) J Mater Process Technol 202:419CrossRefGoogle Scholar
  21. 21.
    Wang R, Chen H, Lu Z, Qiu S, Ko T (2008) J Mater Sci 43:5712. doi: CrossRefGoogle Scholar
  22. 22.
    Bao CM, Dahlborg U, Adkins N, Calvo-Dahlborg M (2009) J Alloys Compd 481:199CrossRefGoogle Scholar
  23. 23.
    Calvo-Dahlborg M, Chambreland S, Bao CM, Quelennec X, Cadel E, Cuvilly F, Dahlborg U (2008) Ultramicroscopy 109:672CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Neilson GW, Enderby JE (1983) Proc R Soc Lond A 390:353CrossRefGoogle Scholar
  26. 26.
    Powell DH, Neilson GW, Enderby JE (1989) J Phys Condens Matter 1:8721CrossRefGoogle Scholar
  27. 27.
    Howell I, Neilson GW (1997) J Mol Liq 73–74:337CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Dahlborg U, Calvo-Dahlborg M, Popel PS, Sidorov VE (2000) Eur Phys J B 14:639CrossRefGoogle Scholar
  30. 30.
    Porod G (1982) In: Glatter O, Kratky O (eds) General theory in small-angle x-ray and neutron scattering. Academic Press, London, pp 17–51Google Scholar
  31. 31.
    Glatter O (1977) J Appl Cryst 10:415CrossRefGoogle Scholar
  32. 32.
    Brunner-Popela J, Glatter O (1997) J Appl Cryst 30:431CrossRefGoogle Scholar
  33. 33.
    Weyerich B, Brunner-Popela J, Glatter O (1999) J Appl Cryst 32:197CrossRefGoogle Scholar
  34. 34.
    Bóta A, Goerigk G, Drucker T, Haubold HG, Petró J (2002) J Catal 205:354CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • U. Dahlborg
    • 1
  • C. M. Bao
    • 1
  • M. Calvo-Dahlborg
    • 1
    Email author
  • F. Devred
    • 2
  • B. E. Nieuwenhuys
    • 2
  1. 1.GPM, CNRS-UMR6634University of RouenSaint-Etienne du Rouvray CedexFrance
  2. 2.Leiden Institute of ChemistryLeiden UniversityCC LeidenThe Netherlands

Personalised recommendations