Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4599–4603 | Cite as

Thermal stability and magnetic anisotropy of nickel nanoplates

  • Yonghua Leng
  • Jie Zheng
  • Jianglan Qu
  • Xingguo LiEmail author
Article

Abstract

The thermal stability and magnetic anisotropies of nickel nanoplates with {111} planes as the exposure plane are studied. The melting point of Ni nanoplates drastically drops as compared to that of the bulk one due to the significant increase in the surface free energy. For the large aspect ratio, these nanoplates tend to lie flat on silicon wafer and form a thin Ni {111} plane film. Both the coercivity and the remnant magnetization of the Ni film deeply depend on the applied field direction. As the angle between the film plane and the applied field direction varies from zero to 45° and to 90°, the coercivity measured at 5 K increases from 335 Oe to 373 and to 410 Oe. Correspondingly, the remnant magnetization decreases from 18.1 to 15.8 to be 10.4 emu/g.

Keywords

Silicon Wafer Select Area Electron Diffraction Oxygen Reduction Reaction Magnetic Anisotropy FePt 

Notes

Acknowledgements

The authors acknowledge NSFC (Nos. 20671004 and 20821091), MOST of China (No. 2009CB939902), MOE of China (No. 707002) and Delta Electronics INC.

References

  1. 1.
    Liu DY, Ren S, Wu H, Zhang QT, Wen LS (2008) J Mater Sci 43:1974. doi: https://doi.org/10.1007/s10853-008-2459-7 CrossRefGoogle Scholar
  2. 2.
    Talapatra S, Tang X, Padi M, Kim T, Vajtai R, Sastry GVS, Shima M, Deevi SC, Ajayan PM (2009) J Mater Sci 44:2271. doi: https://doi.org/10.1007/s10853-008-3015-1 CrossRefGoogle Scholar
  3. 3.
    Kumagai H, Sobukawa H, Kurmoo M (2008) J Mater Sci 43:2123. doi: https://doi.org/10.1007/s10853-007-2033-8 CrossRefGoogle Scholar
  4. 4.
    Liu Q, Huang H, Lai L, Sun J, Shang T, Zhou Q, Xu Z (2009) J Mater Sci 44:1187. doi: https://doi.org/10.1007/s10853-009-3268-3 CrossRefGoogle Scholar
  5. 5.
    Wang HB, Northwood DO (2008) J Mater Sci 43:1050. doi: https://doi.org/10.1007/s10853-007-2268-4 CrossRefGoogle Scholar
  6. 6.
    Gozzi D, Latini A, Capannelli G, Canepa F, Napoletano M, Cimberle MR, Tropeano M (2006) J Alloy Compd 419:32CrossRefGoogle Scholar
  7. 7.
    Sanjabi S, Faramarzi A, Momen MH, Barber ZH (2009) J Phys Chem C 113:8652CrossRefGoogle Scholar
  8. 8.
    Moshkalyov SA, Moreau ALD, Guttierrez HR, Cotta MA, Swart JW (2004) Mater Sci Eng B-Solid State Mater Adv Technol 112:147CrossRefGoogle Scholar
  9. 9.
    Metin O, Ozkar S (2007) Int J Hydrogen Energy 32:1707CrossRefGoogle Scholar
  10. 10.
    Mahata N, Cunha AF, Orfao JJM, Figueiredo JL (2009) Catal Commun 10:1203CrossRefGoogle Scholar
  11. 11.
    Ding XZ, Wu XY, Chiah MC, Cheung WY, Wong SP, Wilson IH, Zhu XR, Shen HL, Liu XH (1999) J Appl Phys 85:8322CrossRefGoogle Scholar
  12. 12.
    Sahoo Y, He Y, Swihart MT, Wang S, Luo H, Furlani EP, Prasad PN (2005) J Appl Phys 98:054308CrossRefGoogle Scholar
  13. 13.
    Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Fischer SF, Kronmuller H, Schweinbock T, Weiss D, Gosele U (2002) J Magn Magn Mater 249:234CrossRefGoogle Scholar
  14. 14.
    Chen D, Liu S, Li JJ, Zhao NQ, Shi CS, Du XW, Sheng J (2009) J Alloy Compd 475:494CrossRefGoogle Scholar
  15. 15.
    Chen M, Kim J, Liu JP, Fan HY, Sun SH (2006) J Am Chem Soc 128:7132CrossRefGoogle Scholar
  16. 16.
    Dumestre F, Chaudret B, Amiens C, Renaud P, Fejes P (2004) Science 303:821CrossRefGoogle Scholar
  17. 17.
    Markovic NM, Gasteiger HA, Ross PN (1995) J Phys Chem 99:3411CrossRefGoogle Scholar
  18. 18.
    Chu HC, Kuo CH, Huang MH (2006) Inorg Chem 45:808CrossRefGoogle Scholar
  19. 19.
    Wu QS, Zhao Y, Zhang CB, Li F (2005) Acta Physica Sin 54:1452Google Scholar
  20. 20.
    Leng YH, Li Y, Li XG, Takahashi S (2007) J Phys Chem C 111:6630CrossRefGoogle Scholar
  21. 21.
    Li DG, Ni XM, Zheng HG, Qi BH (2008) Chem Lett 37:148CrossRefGoogle Scholar
  22. 22.
    Fan N, Xu LQ, Li J, Ma XC, Qian YT (2007) J Cryst Growth 299:212CrossRefGoogle Scholar
  23. 23.
    Kan CX, Wang GH, Zhu XG, Li CC, Cao BQ (2006) Appl Phys Lett 88:071904CrossRefGoogle Scholar
  24. 24.
    Leng YH, Zhang YH, Liu T, Suzuki M, Li XG (2006) Nanotechnology 17:1797CrossRefGoogle Scholar
  25. 25.
    Leng YH, Wang YT, Li XG, Liu T, Takahashhi S (2006) Nanotechnology 17:4834CrossRefGoogle Scholar
  26. 26.
    Wang YL, Cai L, Xia YN (2005) Adv Mater 17:473CrossRefGoogle Scholar
  27. 27.
    Yi JB, Ding J, Zhao ZL, Liu BH (2005) J Appl Phys 97:10K306CrossRefGoogle Scholar
  28. 28.
    Fraune M, Rudiger U, Guntherodt G, Cardoso S, Freitas P (2000) Appl Phys Lett 77:3815CrossRefGoogle Scholar
  29. 29.
    Wernsdorfer W, Hasselbach K, Benoit A, Barbara B, Doudin B, Meier J, Ansermet JP, Mailly D (1997) Phys Rev B 55:11552CrossRefGoogle Scholar
  30. 30.
    Matsumoto M, Morisako A, Katayama N (2003) J Appl Phys 93:7169CrossRefGoogle Scholar
  31. 31.
    Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yonghua Leng
    • 1
  • Jie Zheng
    • 1
  • Jianglan Qu
    • 1
  • Xingguo Li
    • 1
    • 2
    Email author
  1. 1.Beijing National Laboratory for Molecular Sciences (BNLMS), The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.College of EngineeringPeking UniversityBeijingChina

Personalised recommendations