Journal of Materials Science

, Volume 44, Issue 19, pp 5189–5196 | Cite as

Ferroelectric domain switching dynamics with combined 20 nm and 10 ns resolution

  • Nicholas A. Polomoff
  • Ramesh Nath Premnath
  • James L. Bosse
  • Bryan D. HueyEmail author


High speed piezo force microscopy (HSPFM) is employed to investigate ferroelectric domain nucleation and growth of an exposed PZT film. Twenty nanometer spatial and 10 ns temporal resolution is achieved using a pump:probe methodology, allowing area switching and individual domain dynamics to be monitored. Two complementary investigations are performed, mapping switching in either a single 2 μm × 2 μm area for 4.2 V pulses with durations ranging from 20 to 60 ns, or for 10 ns pulses with amplitudes varying from −4 to −4.7 V. In this manner, nascent domains, as well as long-term growth, are efficiently quantified with substantial statistical significance due to the hundreds of images that can reasonably be acquired in a practical experimental session. The switching mechanism, areal switching rate, domain nucleation time, and domain wall velocity are each clearly independent of pulse width. In contrast, these parameters are strongly influenced by increasing pulse heights, including a faster switching rate, shorter nucleation times, and additional nucleation sites. This suggests a spatially and energetically heterogeneous landscape of activation energies for domain reversal sites, only some of which can therefore participate in switching with weak pulses but many of which are activated for strong pulses. These quantitative results, and the spatial, temporal, and statistical benefits provided by HSPFM combined with pump:probe techniques, have important implications for determining ultimate switching speeds, ideal device geometries, and optimal materials selection and processing.


Pulse Width Pulse Amplitude Pulse Time Pulse Height Domain Switching 



This work is partially supported by a high speed SPM development award from the National Science Foundation, Instrumentation for Materials Research, #0817263. Materials were provided by R. Ramesh, U.C. Berkeley Department of Physics, and Y. H. Chu, National Chiao Tung University Department of Materials Science and Engineering, HsinChu, Taiwan.


  1. 1.
    Gruverman A, Kalinin S (2006) J Mater Sci 41:107. doi: CrossRefGoogle Scholar
  2. 2.
    Nagarajan V, Aggarwal S, Gruverman A, Ramesh R, Waser R (2005) Appl Phys Lett 86:262910CrossRefGoogle Scholar
  3. 3.
    Ganpule CS, Roytburd AL, Nagarajan V et al (2002) Phys Rev B 65:014101CrossRefGoogle Scholar
  4. 4.
    Paruch P, Giamarchi T, Triscone JM (2005) Phys Rev Lett 94:197601CrossRefGoogle Scholar
  5. 5.
    Roelofs A, Bottger U, Waser R, Schlaphof F, Trogisch S, Eng LM (2000) Appl Phys Lett 77:3444CrossRefGoogle Scholar
  6. 6.
    Tybell T, Paruch P, Giamarchi T, Triscone JM (2002) Phys Rev Lett 89:097601CrossRefGoogle Scholar
  7. 7.
    Jo JY, Yang SM, Kim TH et al (2009) Phys Rev Lett 102:045701CrossRefGoogle Scholar
  8. 8.
    Hong S, Colla EL, Kim E et al (1999) J Appl Phys 86:607CrossRefGoogle Scholar
  9. 9.
    Kim DJ, Jo JY, Kim TH et al (2007) Appl Phys Lett 91:132903CrossRefGoogle Scholar
  10. 10.
    Yang SM, Jo JY, Kim DJ et al (2008) Appl Phys Lett 92:252901CrossRefGoogle Scholar
  11. 11.
    Gruverman A, Rodriguez BJ, Dehoff C et al (2005) Appl Phys Lett 87:082902CrossRefGoogle Scholar
  12. 12.
    Hambe M, Wicks S, Gregg J, Nagarajan V (2008) Nanotechnology 19:175302CrossRefGoogle Scholar
  13. 13.
    Gruverman A, Wu D, Fan H et al (2008) J Phys: Condens Matter 20:342201Google Scholar
  14. 14.
    Hong S, Klug J, Park M et al (2009) J Appl Phys 105:061619CrossRefGoogle Scholar
  15. 15.
    Gruverman A, Wu D, Scott JF (2008) Phys Rev Lett 100:097601CrossRefGoogle Scholar
  16. 16.
    Grigoriev A, Do D-H, Kim DM et al (2006) Phys Rev Lett 96:187601CrossRefGoogle Scholar
  17. 17.
    Nath R, Chu YH, Polomoff NA, Ramesh R, Huey BD (2008) Appl Phys Lett 93:072905CrossRefGoogle Scholar
  18. 18.
    Hurley DC, Kopycinska-Muller M, Kos AB, Geiss RH (2005) Meas Sci Technol 16:2167CrossRefGoogle Scholar
  19. 19.
    Kolosov OV, Castell MR, Marsh CD, Briggs GAD, Kamins TI, Williams RS (1998) Phys Rev Lett 81:1046CrossRefGoogle Scholar
  20. 20.
    Rabe U, Scherer V, Hirsekorn S, Arnold W (1997) J Vac Sci Technol B 15:1506CrossRefGoogle Scholar
  21. 21.
    Yin Q, Zeng H, Yu H, Li GR (2006) J Mater Sci 41:259. doi: CrossRefGoogle Scholar
  22. 22.
    Huey BD (2007) Annu Rev Mater Res 37:351CrossRefGoogle Scholar
  23. 23.
    Polomoff NA, Nath R, Bosse JL, Huey BD (2009) JVST B 27:1011Google Scholar
  24. 24.
    Dimmler K, Parris M, Butler DE, Pouligny SB, Scott JF, Ishibashi Y (1987) J Appl Phys 61:5467CrossRefGoogle Scholar
  25. 25.
    Jo JY, Han HS, Yoon JG, Song TK, Kim SH, Noh TW (2007) Phys Rev Lett 99:267602CrossRefGoogle Scholar
  26. 26.
    So Y, Kim D, Noh T, Yoon J, Song T (2005) Appl Phys Lett 86:092905CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nicholas A. Polomoff
    • 1
  • Ramesh Nath Premnath
    • 1
    • 2
  • James L. Bosse
    • 1
  • Bryan D. Huey
    • 1
    Email author
  1. 1.Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations