Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5095–5101 | Cite as

Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces

  • Peter MaksymovychEmail author
  • Nina Balke
  • Stephen Jesse
  • Mark Huijben
  • Ramamoorthy Ramesh
  • Arthur P. Baddorf
  • Sergei V. Kalinin
Ferroelectrics

Abstract

Local piezoresponse hysteresis loops were systematically studied on the surface of ferroelectric thin films of BiFeO3 grown on SrRuO3 and La0.7Sr0.3MnO3 electrodes and compared between ultrahigh vacuum and ambient environment. The loops on all the samples exhibited characteristic asymmetry manifested in the difference of the piezoresponse slope following local domain nucleation. Spatially resolved mapping has revealed that the asymmetry is strongly correlated with the random-field disorder inherent in the films and is not affected by the random-bond disorder component. The asymmetry thus originates from electrostatic disorder within the film, which allows using it as a unique signature of single defects or defect clusters. The electrostatic effects due to the measurement environment also contribute to the total asymmetry of the piezoresponse loop, albeit with a much smaller magnitude compared to local defects.

Keywords

Hysteresis Loop BiFeO3 Bottom Electrode Ferroelectric Thin Film Ferroelectric Film 

Notes

Acknowledgements

The research of PM was performed as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory. The experiments were conducted at the Center for Nanophase Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy.

References

  1. 1.
    Tsymbal EY, Kohlstedt H (2006) Science 313:181CrossRefGoogle Scholar
  2. 2.
    Scott JF (2007) Science 315:954CrossRefGoogle Scholar
  3. 3.
    Maksymovych P, Jesse S, Yu P, Ramesh R, Baddorf AP, Kalinin SV (2009) Science 324:1421CrossRefGoogle Scholar
  4. 4.
    Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthélémy A, Fert A (2007) Nat Mater 6:296CrossRefGoogle Scholar
  5. 5.
    Cheong S-W, Mostovoy M (2007) Nat Mater 6:13CrossRefGoogle Scholar
  6. 6.
    Ramesh R, Spaldin NA (2007) Nat Mater 6:21CrossRefGoogle Scholar
  7. 7.
    Kalinin SV et al (2008) Mater Today 11:16CrossRefGoogle Scholar
  8. 8.
    Paruch P, Giamarchi T, Triscone J-M (2007) Topics Appl Phys 105:339CrossRefGoogle Scholar
  9. 9.
    Damjanovic D (1998) Rep Prog Phys 61:1267CrossRefGoogle Scholar
  10. 10.
    Tagantsev AK (1996) Ferroelectrics 184:79CrossRefGoogle Scholar
  11. 11.
    Ahluwalia R, Gao W (2000) Phys Rev B 63:012103CrossRefGoogle Scholar
  12. 12.
    Kleemann W (2006) J Mater Sci 41:129. doi: https://doi.org/10.1007/s10853-005-5954-0 CrossRefGoogle Scholar
  13. 13.
    Morozovska AN, Kalinin SV, Eliseev EA, Svechnikov SV (2007) Ferroelectrics 354:198CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Gruverman A, Wu D, Scott JF (2008) Phys Rev Lett 100:097601CrossRefGoogle Scholar
  16. 16.
    Jo JY, Yang SM, Kim TH, Lee HN, Yoon J-G, Park S, Yo J, Jung MH, Noh TW (2009) Phys Rev Lett 102:045701CrossRefGoogle Scholar
  17. 17.
    Maksymovych P, Jesse S, Huijben M, Ramesh R, Morozovska A, Baddorf AP, Kalinin SV, Maksymovych P, Jesse S, Huijben M, Ramesh R, Morozovska A, Baddorf AP, Kalinin SV et al (2009) Phys Rev Lett 102:017601CrossRefGoogle Scholar
  18. 18.
    Kalinin SV et al (2008) Phys Rev Lett 100:155703CrossRefGoogle Scholar
  19. 19.
    Jesse S et al (2008) Nat Mater 7:209CrossRefGoogle Scholar
  20. 20.
    Rodriguez BJ et al (2009) Adv Funct Mater 19:1CrossRefGoogle Scholar
  21. 21.
    Jesse S, Maksymovych P, Kalinin SV (2008) Appl Phys Lett 93:112903CrossRefGoogle Scholar
  22. 22.
    Zavaliche F, Das RR, Kim DM, Eom CB, Yang SY, Shafer P, Ramesh R (2005) Appl Phys Lett 87:182912CrossRefGoogle Scholar
  23. 23.
    Tagantsev AK, Gerra G (2006) J Appl Phys 100:015607CrossRefGoogle Scholar
  24. 24.
    Fong DD, Kolpak AM, Eastman JA, Streiffer SK, Fuoss PH, Stephenson GB, Thomposon C, Kim DM, Choi KJ, Eom CB, Grinberg I, Rappe AM (2006) Phys Rev Lett 96:127601CrossRefGoogle Scholar
  25. 25.
    Sze SM (1997) Modern semiconductor device physics. Wiley-InterscienceGoogle Scholar
  26. 26.
    Stengel M, Vanderbilt D, Spaldin NA (2009) Nat Mater 8:392CrossRefGoogle Scholar
  27. 27.
    Karapetian E, Sevostianov I, Kachanov K (2000) Philos Mag B 80:4CrossRefGoogle Scholar
  28. 28.
    Morozovska AN et al (2008) Phys Rev B 78:054101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Peter Maksymovych
    • 1
    Email author
  • Nina Balke
    • 1
  • Stephen Jesse
    • 1
  • Mark Huijben
    • 2
    • 3
  • Ramamoorthy Ramesh
    • 2
  • Arthur P. Baddorf
    • 1
  • Sergei V. Kalinin
    • 1
  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Departments of Materials Sciences and Engineering, and PhysicsUniversity of Califronia BerkeleyBerkeleyUSA
  3. 3.Faculty of Science and Technology, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations